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Abstract—The conventional wisdom has been that Internet pro-
tocol (IP) is the natural protocol layer for implementing multi-
cast related functionality. However, more than a decade after its
initial proposal, IP multicast is still plagued with concerns per-
taining to scalability, network management, deployment, and sup-
port for higher layer functionality such as error, flow, and con-
gestion control. In this paper, we explore an alternative architec-
ture that we term End System Multicast, where end systems im-
plement all multicast related functionality including membership
management and packet replication. This shifting of multicast sup-
port from routers to end systems has the potential to address most
problems associated with IP multicast. However, the key concern is
the performance penalty associated with such a model. In partic-
ular, End System Multicast introduces duplicate packets on phys-
ical links and incurs larger end-to-end delays than IP multicast.

In this paper, we study these performance concerns in the con-
text of the Narada protocol. In Narada, end systems self-organize
into an overlay structure using a fully distributed protocol. Fur-
ther, end systems attempt to optimize the efficiency of the overlay
by adapting to network dynamics and by considering application
level performance. We present details of Narada and evaluate it
using both simulation and Internet experiments. Our results indi-
cate that the performance penalties are low both from the applica-
tion and the network perspectives. We believe the potential benefits
of transferring multicast functionality from end systems to routers
significantly outweigh the performance penalty incurred.

Index Terms—Multicast, overlay network, self-organizing pro-
tocol.

I. INTRODUCTION

T RADITIONAL network architectures distinguish between
two types of entities: end systems (hosts) and the network

(routers and switches). One of the most important architectural
decisions is the division of functionality between end systems
and networks.

In the Internet architecture, the internetworking layer or IP
implements a minimal functionality—a best-effort unicast data-
gram service, and end systems implement all other important
functionality such as error, congestion, and flow control. Such
a minimalist approach is one of the most important technical
reasons for the Internet’s growth from a small research net-
work into a global, commercial infrastructure with heteroge-
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neous technologies, applications, and administrative authorities.
The growth of this network has in turn unleashed the develop-
ment of new applications, which require richer network func-
tionality.

The key architectural question is: what new features should
be added to the IP layer? Multicast and quality-of-service (QoS)
are the two most important features that have been or are being
added to the IP layer. While QoS functionality cannot be pro-
vided by end systems alone and, thus, has to be supported at the
IP layer, this is not the case for multicast. In particular, it is pos-
sible for end systems to implement multicast services on top of
the IP unicast service.

In deciding whether to implement multicast services at the
IP layer or at end systems, there are two conflicting consider-
ations that we need to reconcile. According to the end-to-end
arguments [18], a functionality should be 1) pushed to higher
layers if possible; unless 2) implementing it at the lower layer
can achieve large performance benefits that outweigh the cost
of additional complexity at the lower layer.

In his seminal work in 1989 [5], Deering argues that this
second consideration should prevail and multicast should be im-
plemented at the IP layer. This view has been widely accepted
so far. IP multicast is the first significant feature that has been
added to the IP layer since its original design and most routers
today implement IP multicast. Despite this, IP multicast has sev-
eral drawbacks that have so far prevented the service from being
widely deployed. First, IP multicast requires routers to main-
tain per group state, which not only violates the “stateless” ar-
chitectural principle of the original design, but also introduces
high complexity and serious scaling constraints at the IP layer.
Second, IP multicast is a best effort service, and attempts to
conform to the traditional separation of routing and transport
that has worked well in the unicast context. However, providing
higher level features such as reliability, congestion control, flow
control, and security has been shown to be more difficult than in
the unicast case. Finally, IP multicast calls for changes at the in-
frastructural level, and this slows down the pace of deployment.

In this paper, we revisit the issue of whether multicast re-
lated functionality should be implemented at the IP layer or at
the end systems. In particular, we consider a model in which
multicast related features, such as group membership, multi-
cast routing and packet duplication, are implemented at end sys-
tems, assuming onlyunicastIP service. We call the scheme End
System Multicast. Here, end systems participating in the multi-
cast group communicate via an overlay structure. The structure
is an overlay in the sense that each of its edges corresponds to a
unicast path between two end systems in the underlying Internet.

We believe that End System Multicast has the potential to
address most problems associated with IP multicast. Since all
packets are transmitted as unicast packets, deployment may be
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Fig. 1. Example to illustrate naive unicast, IP multicast, and End System Multicast.

accelerated. End System Multicast maintains the stateless na-
ture of the network by requiring end systems, which subscribe
only to a small number of groups, to perform additional com-
plex processing for any given group. In addition, we believe that
solutions for supporting higher layer features such as error, flow,
and congestion control can be significantly simplified by lever-
aging well understood unicast solutions for these problems, and
by exploiting application specific intelligence.

While End System Multicast has many advantages, several
issues need to be resolved before it become a practical alterna-
tive to IP multicast, In particular, an overlay approach to multi-
cast, however efficient, cannot perform as well as IP multicast.
It is impossible to completely prevent multiple overlay edges
from traversing the same physical link and, thus, some redun-
dant traffic on physical links is unavoidable. Further, communi-
cation between end systems involves traversing other end sys-
tems, potentially increasing latency. We present an example to
illustrate these points in Section II. In this paper, we focus on
two fundamental questions pertaining to the End System Mul-
ticast architecture: 1) what are the performance implications of
using an overlay architecture for multicast? and 2) how do end
systems with limited topological information cooperate to con-
struct good overlay structures?

In this paper, we seek to answer these questions in the con-
text of a protocol that we have developed calledNarada. Narada
constructs an overlay structure among participating end systems
in a self-organizingandfully distributedmanner. Narada is ro-
bust to the failure of end systems and to dynamic changes in
group membership. End systems gather information of network
path characteristics using passive monitoring and active mea-
surements. Narada continually refines the overlay structure as
more network information is available. We present details of
Narada’s design in Section III.

We have conducted a detailed evaluation of the End System
Multicast architecture in the context of the Narada protocol
using simulation and Internet experiments. Our evaluation
considers both application and network level metrics as dis-
cussed in Section IV. Our Internet experiments are conducted
on a wide-area test-bed of about twenty hosts as described in
Section V. The results indicate that End System Multicast can
achieve bandwidth performance comparable to IP multicast,
while at the same time achieving mean receiver latencies that
are about 1.3–1.5 times latencies seen with IP multicast. Results
from our simulation experiments, presented in Section VI are
consistent with our Internet results and indicate that the promise
of the End System Multicast architecture extends to medium
sized groups of hundreds of members. For example, for groups

of 128 members, the average receiver delay with Narada is
about 2.2–2.8 times the average receiver delay with IP multi-
cast, while the network resources consumed by Narada is about
twice that of IP multicast. Overall our results demonstrate that
End System Multicast is a promising architecture for enabling
small and medium sized group communication applications on
the Internet.

II. END SYSTEM MULTICAST

We illustrate the differences between IP multicast, naive uni-
cast, and End System Multicast using Fig. 1. Fig. 1(a) depicts an
example physical topology, where and are routers, while

, , , and are end systems. Link delays are as indicated.
– represents a costly transcontinental link, while all other

links are cheaper local links. Further, let us assumewishes to
send data to all other nodes.

Fig. 1(b) depicts naive unicast transmission. Naive unicast
results in significant redundancy on links near the source (for
example, link – carries three copies of a transmission by

), and results in duplicate copies on costly links (for example,
link – has two copies of a transmission by).

Fig. 1(c) depicts the IP multicast tree constructed by DVMRP
[5]. DVMRP is the classical IP multicast protocol, where data is
delivered from the source to recipients using an IP multicast tree
composed of the unicast paths from each recipient to the source.
Redundant transmission is avoided, and exactly one copy of the
packet traverses any given physical link. Each recipient receives
data with the same delay as thoughwere sending to it directly
by unicast.

Fig. 1(d) depicts an “intelligent” overlay tree that may be
constructed using the End System Multicast architecture. The
number of redundant copies of data near the source is reduced
compared with naive unicast, and just one copy of the packet
goes across the costly transcontinental link– . Yet, this
efficiency over naive unicast based schemes has been obtained
with absolutely no change to routers, and all intelligence is im-
plemented at the end systems. However, while intelligently con-
structed overlay trees can result in much better performance than
naive unicast solutions, they still cannot perform as well as solu-
tions with native IP multicast support. For example, in Fig. 1(d),
link – carries a redundant copy of data transmission, while
the delay from source to receiver has increased.

Given that End System Multicast tries to push functionality
to the edges, there are two very different ways this can be
achieved: peer-to-peer architectures and proxy-based architec-
tures. In a peer-to-peer architecture, functionality is pushed
to the end hosts actually participating in the multicast group.
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Such architectures are thus completely distributed with each
end host maintaining state only for those groups it is actually
participating in. In a proxy-based architecture on the other
hand, an organization that provides value added services
deploys proxies at strategic locations on the Internet. End
hosts attach themselves to proxies near them, and receive data
using plain unicast, or any available multicast media. While
these architectures have important differences, fundamental to
both of them are concerns regarding the performance penalty
involved in disseminating data using overlays as compared
with solutions that have native multicast support. Thus, an end
system in our paper refers to the entity that actually takes part
in a self-organization protocol, and could be an end host or a
proxy.

Our evaluation of End System Multicast targets a wide range
of group communication applications such as audio and video
conferencing, virtual classroom and multiparty network games.
Such applications typically involve small (tens of members)
and medium sized (hundreds of members) groups. While End
System Multicast may be relevant even for applications which
involve much larger group sizes such as broadcasting and
content distribution—particularly in the context of proxy-based
architectures—such applications are outside the focus of this
paper. We defer a detailed discussion to Section VII.

III. N ARADA DESIGN

In this section, we present Narada, a protocol we designed
that implements End System Multicast. In designing Narada,
we had the following objectives in mind.

Self-Organizing: The construction of the end system
overlay must take place in a fully distributed fashion and must
be robust to dynamic changes in group membership.

Overlay Efficiency: The tree constructed must be efficient
both from the network and the application perspective. From the
network perspective, the constructed overlay must ensure that
redundant transmission on physical links is kept minimal. How-
ever, different applications may require overlays with different
notions of efficiency. While interactive applications like audio
conferencing and group messaging require low latencies, ap-
plications like video conferencing simultaneously require high
bandwidth and low latencies.

Self-Improving: The overlay construction must include
mechanisms by which end systems gather network information
in a scalable fashion. The protocol must allow for the overlay to
incrementally evolve into a better structure as more information
becomes available.

Adaptive to Network Dynamics: The overlay must adapt
to long-term variations in Internet path characteristics (such as
bandwidth and latency), while being resilient to inaccuracies
inherent in the measurement of these quantities.

The intuitive approach to constructing overlay spanning trees
is to construct them directly—that is, members explicitly select
their parents from among the members they know [10]. Narada,
however, constructs trees in a two-step process. First, it con-
structs a richer connected graph that we term amesh, and tries to
ensure that the mesh has desirable performance properties that
are discussed later. In the second step, Narada constructs span-
ning trees of the mesh, each tree rooted at the corresponding

Fig. 2. Example to illustrate the mesh-based approach in Narada.

source using well known routing algorithms. Fig. 2 presents an
example mesh that Narada constructs for the physical topology
shown in Fig. 1(a), along with a spanning tree rooted at.

This mesh-based approach is motivated by the need to support
multisource applications. Single shared trees are susceptible to
a central point of failure, and are not optimized for an individual
source. Explicitly constructing multiple overlay trees, one tree
for each source is a possible design alternative but needs to deal
with the overhead of maintaining and optimizing multiple over-
lays. In contrast, meshes allow us to construct trees optimized
for the individual source, yet allow us to abstract out group man-
agement functions at the mesh level rather than replicating them
across multiple trees. Further, we may leverage standard routing
algorithms for construction of data delivery trees.

In our approach, trees for data delivery are constructed en-
tirely from the overlay links present in the mesh. Hence, it be-
comes important to construct a good mesh so that good quality
trees may be produced. A good mesh has two properties. First,
the quality of the path between any pair of members is com-
parable to the quality of the unicast path between that pair of
members. Second, each member has a limited number of neigh-
bors in the mesh. By path qualities, we refer to the metrics of
interest for the application, such as delay and bandwidth. Lim-
iting the number of neighbors in the mesh controls the overhead
of running routing algorithms on the mesh.

We explain the distributed algorithms that Narada uses to con-
struct and maintain the mesh in Section III-A. We present mech-
anisms Narada uses to improve mesh quality in Section III-B.
Narada runs a variant of standard distance vector algorithms on
top of the mesh and uses well known algorithms to construct
per-source (reverse) shortest path spanning trees for data de-
livery. We discuss this in Section III-C. While the Narada frame-
work is generic and is applicable to a range of applications, it
may be customized to meet the requirements of a specific ap-
plication. We discuss this in Section III-D with the example of
conferencing applications.

A. Group Management

In this subsection, we present distributed heuristics Narada
uses to keep the mesh connected, to incorporate new members
into the mesh and to repair possible partitions that may be
caused by members leaving the group or by member failure.

As we do not wish to rely on a single nonfailing entity to
keep track of group membership, the burden of group mainte-
nance is shared jointly by all members. To achieve a high degree
of robustness, our approach is to have every member maintain
a list of all other members in the group. Since Narada is tar-
geted toward medium sized groups, maintaining the complete
group membership list is not a major overhead. Every member’s
list needs to be updated when a new member joins or an ex-
isting member leaves. The challenge is to disseminate changes
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Fig. 3. Actions taken by a memberi on receiving a refresh message from
memberj.

in group membership efficiently, especially in the absence of
a multicast service provided by the lower layer. We tackle this
by exploiting the mesh to propagate such information. However,
this strategy is complicated by the fact that the mesh might itself
become partitioned when a member leaves. To handle this, we
require that each member periodically generate a refresh mes-
sage with monotonically increasing sequence number, which is
disseminated along the mesh. Each memberkeeps track of the
following information for every other member in the group:
1) member address; 2) last sequence number that knows

has issued; and 3)local timeat when first received infor-
mation that issued . If member has not received an update
from member for time, then, assumes thatis either dead
or potentially partitioned from. Member then initiates a set
of actions to determine the existence of a partition and repair it
if present as discussed in Section III-A3.

Propagation of refresh messages from every member along
the mesh could potentially be quite expensive. Instead, we re-
quire that each member periodically exchange its knowledge of
group membership with its neighbors in the mesh. A message
from member to a neighbor contains a list of entries, one
entry for each member that knows is part of the group. Each
entry has the following fields: 1) member addressand 2) last
sequence number that knows has issued. On receiving
a message from a neighbor, member updates its table ac-
cording to the pseudo code presented in Fig. 3.

Finally, given that a distance vector routing algorithm is run
on top of the mesh (Section III-C), routing update messages
exchanged between neighbors can include member sequence
number information with minimum extra overhead.

1) Member Join: When a member wishes to join a group,
Narada assumes that the member is able to get a list of group
members by an out-of-band bootstrap mechanism. The list
needs neither be complete nor accurate, but must contain at
least one currently active group member. In this paper, we
do not address the issue of the bootstrap mechanism. We
believe that such a mechanism is application specific and our
protocol is able to accommodate different ways of obtaining
the bootstrap information.

The joining member randomly selects a few group members
from the list available to it and sends them messages requesting
to be added as a neighbor. It repeats the process until it gets a
response from some member, when it has successfully joined
the group. Having joined, the member then starts exchanging
refresh messages with its neighbors. The mechanisms described
earlier will ensure that the newly joined member and the rest of
the group learn about each other quickly.

2) Member Leave and Failure:When a member leaves a
group, it notifies its neighbors, and this information is propa-
gated to the rest of the group members along the mesh. In Sec-

Fig. 4. A sample overlay topology.

tion III-C, we will describe our enhancement to distance vector
routing that requires a leaving member to continue forwarding
packets for some time to minimize transient packet loss.

We also need to consider the difficult case of abrupt failure. In
such a case, failure should be detected locally and propagated to
the rest of the group. In this paper, we assume a fail-stop failure
model [20], which means that once a member dies, it remains in
that state, and the fact that the member is dead is detectable by
other members. We explain the actions taken on member death
with respect to Fig. 4. This example depicts the mesh between
group members at a given point in time. Assume that member

dies. Its neighbors in the mesh,, , stop receiving refresh
messages from . Each of them independently send redundant
probe messages to, such that the probability every probe mes-
sage (or its reply) is lost is very small. If does not respond to
any probe message, then,and assume to be dead and
propagate this information throughout the mesh.

Every member needs to retain entries in its group member-
ship table for dead members. Otherwise, it is impossible to dis-
tinguish between a refresh announcing a new member and a re-
fresh announcing stale information regarding a dead member.
However, dead member information can be flushed after suffi-
cient amount of time.

3) Repairing Mesh Partitions:It is possible that member
failure can cause the mesh to become partitioned. For example,
in Fig. 4, if member dies, the mesh becomes partitioned. In
such a case, members must first detect the existence of a par-
tition, and then repair it by adding at least one overlay link to
reconnect the mesh. Members on each side of the partition stop
receiving sequence number updates from members on the other
side. This condition is detected by a timeout of duration.

Each member maintains a queue of members that it has
stopped receiving sequence number updates from for at least

time. It runs a scheduling algorithm that periodically and
probabilistically deletes a member from the head of the queue.
The deleted member is probed and it is either determined to
be dead, or a link is added to it. The scheduling algorithm is
adjusted so that no entry remains in the queue for more than a
bounded period of time. Further, the probability value is chosen
carefully so that in spite of several members simultaneously
attempting to repair partition only a small number of new links
are added. The algorithm is summarized in Fig. 5.

B. Mesh Performance

The constructed mesh can be quite suboptimal, because 1) ini-
tial neighbor selection by a member joining the group is random
given limited availability of topology information at bootstrap;
2) partition repair might aggressively add edges that are essen-
tial for the moment but not useful in the long run; 3) group
membership may change due to dynamic join and leave; and



1460 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

Fig. 5. Scheduling algorithm used by memberi to repair mesh partition.

Fig. 6. Example algorithm thati uses in determining utility of adding link to
j, when latency is the main metric of interest.

4) underlying network conditions, routing and load may vary.
Narada allows for incremental improvement of mesh quality
by adding and dropping of overlay links. Members probe each
other at random and new links may be added depending on the
perceived gain inutility in doing so. Further, members con-
tinuously monitor the utility of existing links, and drop links
perceived as not useful. This dynamic adding and dropping of
links in the mesh distinguishes Narada from traditional routing
protocols.

The issue, then, is the design of a utility function that reflects
mesh quality. A good-quality mesh must ensure that for any pair
of members, there exists paths along the mesh which can pro-
vide performance comparable to the performance of the unicast
path between the members. A membercomputes the utility
gain if a link is added to member based on 1) the number
of members to which improves the performance ofand 2)
how significant this improvement in performance is. The precise
utility function depends on the performance metric (or metrics)
that the overlay is being optimized for. Fig. 6 presents example
pseudo code for a setting where latency is the primary metric of
interest. The utility can take a maximum value of, where is
the number of group membersis aware of. Each member
can contribute a maximum of one to the utility, the actual con-
tribution being ’s relative decrease in delay to if the edge to

were added. Narada adds and removes links from the mesh
using the following heuristics.

Fig. 7. Algorithm thati uses to determine consensus cost to a neighborj.

Addition of Links: Every member periodically probes some
random member that is not a neighbor, and evaluates the utility
of adding a link to this member. When a memberprobes a
member , returns to a copy of its routing table. uses this
information to compute the expected gain in utility if a link to
is added as described in Fig. 6.decides to add a link toif the
expected utility gain exceeds a given threshold. The threshold is
chosen to depend on the group size, and the number of neighbors
and have in the mesh. Finally, there may be other metric-spe-

cific heuristics for link addition. For example, when the overlay
is optimized for latency,may also add a link to if the physical
delay between them is very low and the current overlay delay
between them very high.

Dropping of Links: Ideally, the loss in utility if a link were to
be dropped must exactly equal the gain in utility if the same link
were immediately readded. However, this requires estimating
the relative degradation in performance to a member if a link
were dropped and it is difficult to obtain such information. In-
stead, we overestimate the actual utility of a link by itscost. The
cost of a link between and in ’s perception is the number
of group members for which uses as next hop. Periodi-
cally, a member computes theconsensus costof its link to every
neighbor using the algorithm shown in Fig. 7. It then picks the
neighbor with lowest consensus cost and drops it if the con-
sensus cost falls below a certain threshold. The threshold is
again computed as a function of the member’s estimation of
group size and its number of mesh neighbors. The consensus
cost of a link represents the maximum of the cost of the link in
each neighbor’s perception. Yet, it might be computed locally
as the mesh runs a distance vector algorithm with path informa-
tion.

Our heuristics for link dropping have the following desirable
properties.

Stability: A link that Narada drops is unlikely to be added
again immediately. This is ensured by several factors: 1) the
threshold for dropping a link is less than or equal to the threshold
for adding a link; 2) the utility of an existing link is overesti-
mated by the cost metric; and 3) dropping of links is done con-
sidering the perception that both members have regarding link
cost.

Partition Avoidance: We present an informal argument as
to why our link dropping algorithm does not cause a partition
assuming steady state conditions and assuming multiple links
are not dropped concurrently. Assume that memberdrops
neighbor . This could result in at most two partitions. Assume
the size of ’s partition is and the size of ’s partition is .
Further, assume bothand know all members currently in
the group. Then, the sum of and is the size of the group.
Thus, must be at least and must be at least

, and at least one of these must exceed half the group size.
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As long as the drop threshold is lower than half the group size,
the edge will not be dropped. Finally, we note that in situations
where a partition of the mesh is caused (for example, due to
multiple links being dropped simultaneously), our mechanisms
for partition detection and repair described in Section III-A
would handle the situation.

C. Data Delivery

Narada runs a distance vector protocol on top of the mesh.
In order to avoid the well-known count-to-infinity problems, it
employs a strategy similar to border gateway protocol (BGP)
[17]. Each member not only maintains the routing cost to every
other member, but also maintains the path that leads to such a
cost. Further, routing updates between neighbors contains both
the cost to the destination and the path that leads to such a cost.
The per-source trees used for data delivery are constructed from
the reverse shortest path between each recipient and the source,
in identical fashion to DVMRP [5]. A member that receives a
packet from source through a neighbor forward the packet
only if is the next hop on the shortest path from to .
Further, forward the packet to all its neighbors who use
as the next hop to reach.

The routing metric used in the distance vector protocol de-
pends on the metrics for which the overlay is being optimized,
which in turn depends on the particular application. We present
an example in Section III-D.

A consequence of running a routing algorithm for data de-
livery is that there could be packet loss during transient condi-
tions when member routing tables have not yet converged. In
particular, there could be packet loss when a member leaves the
group or when a link is dropped for performance reasons. To
avoid this, data continues to be forwarded along old routes for
enough time until routing tables converge. To achieve this, we
introduce a new routing cost called transient forward (TF). TF is
guaranteed to be larger than the cost of a path with a valid route,
but smaller than infinite cost. A member that leaves adver-
tises a cost of TF for all members for which it had a valid route.
Normal distance vector operations leads to members choosing
alternate valid routes not involving (as TF is guaranteed to
be larger than the cost of any valid route). The leaving member
continues to forward packets until it is no longer used by any
neighbor as a next hop to reach any member, or until a certain
time period expires.

D. Application-Specific Customizations

A key feature of End System Multicast is that it enables appli-
cation customizable solutions. In this section, we will study how
we support an important, performance demanding class of appli-
cations—video conferencing—within the Narada framework.
Conferencing applications require overlay treessimultaneously
optimized for both latency and available bandwidth. Thus, this
study allows us to illustrate howdynamicmetrics like bandwidth
and latency are dealt with in the Narada framework. These ideas
may be applied to other applications as well.

Conferencing applications deal with media streams that can
tolerate loss through a degradation in application quality. This
allows us to build a system that employs a hop-by-hop conges-

tion control protocol. An overlay node adapts to a bandwidth
mismatch between the upstream and downstream links by drop-
ping packets. We use TFRC [7] as the underlying transport pro-
tocol on each overlay link. TFRC is rate-controlled UDP, and
achieves TCP-friendly bandwidths. It does not suffer delays as-
sociated with TCP such as retransmission delays and queuing
delays at the sender buffer.

To construct overlay trees simultaneously optimized for
bandwidth and latency, we have leveraged work done by Wang
and Crowcroft [21] in the context of routing on multiple metrics
in the Internet. A first choice is to use a single mixed routing
metric which is a function of both bandwidth and latency. How-
ever, it is unclear how this function can individually reflect the
bandwidth and latency requirements of the application. Instead,
we use multiple routing metrics in the distance vector protocol,
the latency between members and the available bandwidth.
The routing protocol uses a variant of theshortest widest path
algorithm presented in [21]. Every member tries to pick the
widest (highest bandwidth)path to every other member. If there
are multiple paths with the same bandwidth, the member picks
theshortest (lowest latency)path among all these.

We collect raw latency estimates of links in the mesh by
having neighbors ping each other every 200 ms. Raw estimates
of available bandwidth are obtained by passively monitoring
data flow along the links. Both available bandwidth and latency
are dynamic in nature, and using them as routing metrics leads
to serious concerns of instability. We deal with the stability con-
cerns using techniques in the design of the routing metrics de-
scribed below.

Latency: We filter raw estimates of the overlay link latency
using an exponential smoothing algorithm. The advertised link
latency is left unchanged until the smoothed estimate differs
from the currently advertised latency by a significant amount.

Available Bandwidth: We filter raw estimates of the
available bandwidth of an overlay link using an exponential
smoothing algorithm, to produce asmoothed estimate. Next,
instead of using the smoothed estimate as a routing metric, we
define discretized bandwidth levels. The smoothed estimate
is rounded down to the nearest bandwidth level for routing
purposes. Thus, a mesh link with a smoothed estimate of
600 kb/s may be advertised as having a bandwidth of 512 kb/s,
in a system with levels corresponding to 512 and 1024 kb/s.
To minimize possible oscillations when the smoothed estimate
is close to a bandwidth level, we employ a simple hysteresis
algorithm. Thus, while we move down a level immediately
when the smoothed estimate falls below the current level, we
move up a level only if the estimate significantly exceeds the
bandwidth corresponding to the next level.

Given that conferencing applications often have a bounded
source rate, the largest level in the system is set to this max-
imum rate. Discretization of bandwidth and choice of a max-
imum bandwidth level ensure that all overlay links can fall in a
small set of equivalence classes with regard to bandwidth. This
discretized bandwidth metric not only enables greater stability
in routing on the overlays, but also allows latency to become
a determining factor when different links have similar but not
identical bandwidth.
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Our discussion so far has described how we incorporate
bandwidth into the routing protocol, given a mesh that has been
constructed. Incorporating bandwidth also requires changes to
the heuristics used when a mesh link is added. When a member

probes a memberand has an estimate of the available band-
width to , a modified version of the utility function presented
in Fig. 6 that considers bandwidth is used to determine if a
link to must be added. However, ifdoes not have a band-
width estimate to , it first determines the available bandwidth
using active measurements involving transfer of data using
the underlying transport protocol for several seconds, but at a
rate bounded by the maximum source rate. To minimize the
number of active measurements,conducts a probe to only
if is seeing better application level performance thanto the
sources. We are currently investigating whether we can min-
imize active bandwidth measurements by using light-weight
probing techniques such as round-trip time (RTT) probes and
10 kB data transfers.

IV. EVALUATION

The primary goal of our evaluation is to answer the following
question: what performance penalty does an End System Mul-
ticast architecture suffer as compared with IP multicast with re-
gard to both application and network level metrics? To answer
this question, we compare the performance of a scheme for dis-
seminating data under the IP multicast architectural framework,
with the performance of various schemes for disseminating data
under the End System Multicast framework.

We have conducted our evaluation using both simulation and
Internet experiments. Internet experiments help us understand
how schemes for disseminating data behave in dynamic and
unpredictable real-world environments, and give us an idea of
the end-to-end performance seen by actual applications. On the
other hand, simulations help analyze the scaling properties of
the End System Multicast architecture with larger group sizes.
Further, they help in understanding details of protocol behavior
under controlled and repeatable settings.

In the rest of this section, we present schemes that we com-
pare for disseminating data, and our performance metrics. Sec-
tions V and VI present results for our Internet and simulation
experiments.

A. Schemes Compared

We compare the following schemes for disseminating data in
our simulation and Internet experiments.

DVMRP: We assume that IP multicast involves constructing
classical DVMRP like trees [5], composed of the reverse paths
from the source to each receiver.

Narada: This represents a scheme that constructs overlay
trees in an informed manner, making use of network metrics
like bandwidth and latency. It is indicative of the performance
one may expect with an End System Multicast architecture,
though an alternate protocol may potentially result in better per-
formance.

Random: This represents a naive scheme that constructs
random but connected End System Multicast overlays.

Naive Unicast: Here, the source simultaneously unicasts
data from the source to all receivers. Thus, in a group of size

, the source must send duplicate copies of the same data.
We note that the network metric considered in Narada impacts

overlay performance. We have evaluated Narada-based schemes
that consider: i) static delay based metrics such as propagation
delay; ii) latency alone; iii) bandwidth alone; and iv) latency and
bandwidth. We refer the reader to [3] for detailed results of this
study.

B. Performance Metrics

To facilitate our comparison, we use several metrics that cap-
ture both application and network level performance.

Latency: This metric measures the end-to-end delay from
the source to the receivers, as seen by the application.

Bandwidth: This metric measures the application level
throughput at the receiver.

Stress: We refer to the number of identical copies of a packet
carried by a physical link as thestress of a physical link. For
example, in Fig. 1(b), links – and – have a stress of
2 and 3, respectively, while in Fig. 1(d), link – has a stress
of 1. In general, we would like to keep the stress on all links as
low as possible.

Resource Usage: We define resource usage as ,
where, is the number of links active in data transmission,

is the delay of link , and is the stress of link. The re-
source usage is a metric of the network resources consumed in
the process of data delivery to all receivers. Implicit here is the
assumption that links with higher delay tend to be associated
with higher cost. The resource usage is 30 in the case of trans-
mission by DVMRP, 57 for naive unicast, and 32 for the smarter
tree, shown in Fig. 1(c), (b), and (d), respectively. Finally, we
compute the normalized resource usage (NRU) of a scheme as
the ratio of the resource usage with that scheme relative to the
resource usage with DVMRP.

Protocol Overhead: This metric is defined as the ratio of
the total bytes of nondata traffic that enters the network to the
total bytes of data traffic that enters the network. The overhead
includes control traffic required to keep the overlay connected,
and the probe traffic and active bandwidth measurements in-
volved in the self-organization process.

Latency and bandwidth are application level performance
metrics, while all other metrics measure network costs. Not
all applications care about both latency and bandwidth. Our
evaluation, thus, considers the needs of applications with more
stringent requirements (such as conferencing), which require
both high bandwidth and low latencies. An architecture that
can support such applications well can potentially also support
applications that care about latency, or bandwidth alone.

C. Issues in Measuring Performance Metrics

Our Internet and simulation evaluation presents several issues
that we discuss.

1) Internet Evaluation:The limited deployment of IP
multicast in the real world makes it difficult to evaluate
application level performance using this architecture. Instead,
we approximate this by thesequential unicasttest. Here, we
measure the bandwidth and latency of the unicast path from the
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source to each recipientindependently(in the absence of other
recipients). The above technique provides an indication of the
performance that applications would see with IP multicast
using DVMRP-like trees. While DVMRP actually results in
trees composed of unicast paths from the receiver to the source
(reverse-path forwarding), we do not expect this to affect our
comparison results.

We compute theresource usagewith DVMRP by deriving the
physical links of the tree, as well as the delays of these links, by
doing atraceroutefrom the source to each receiver.

Our Internet experiments currently do not measure stress.
Measuring this metric requires an accurate knowledge of the
physical paths between all pairs of members.

In our Internet experiments, thelatencymetric includes the
propagation and queuing delays of individual overlay links, as
well as queuing delay and processing overhead at end systems
along the path. We ideally wish to measure the latency of each
individual data packet. However, issues associated with time
synchronization of hosts and clock skew adds noise to our mea-
surements of one-way delay that is difficult to quantify. There-
fore, we choose to estimate the RTT. By RTT, we refer to the
time it takes for a packet to move from the source to a recipient
along a set of overlay links, and back to the source, using the
sameset of overlay links but in reverse order. Thus, the RTT of
an overlay pathS–A–Ris the time taken to traverseS–A–R–A–S.
The RTT measurements include all delays associated with one
way latencies, and are ideally twice the end-to-end delay.

2) Simulation Evaluation:Our simulation experiments are
conducted using a locally written, packet-level, event-based
simulator. The simulator assumes shortest delay routing be-
tween any two members. The simulator models the propagation
delay of physical links but does not model bandwidth, queuing
delay and packet losses. This was done for two reasons. First,
it is difficult to model Internet dynamics in a reasonable way
in a simulator. Second, modeling of cross-traffic potentially
restricts the scalability of our simulations.

Given these restrictions, not all metrics have been evaluated
in our simulations. In particular, we do not consider the band-
width between members. Second, we assume that delays be-
tween members remains constant, and thelatencymetric is used
in a more static sense. Finally, theprotocol overheadmetric
in our simulations does not consider the overhead involved in
members discovering bandwidth to each other.

D. Summarizing Performance of Schemes

The objective of our evaluation is to evaluate and compare the
performance of various schemes for disseminating data with re-
spect to each of the performance metrics listed in Section IV-B.
For a metric such as resource usage, it is easy to summarize
the performance of a scheme. However, it is much more diffi-
cult to summarize the latency and bandwidth performance that
a number of different hosts observe with a particular scheme.
One approach is to present the mean bandwidth and latency, av-
eraged across all receivers. Indeed, we do use this technique in
Sections V-B and VI-C. However, this does not give us an idea
of the distribution of performance across different receivers.

A simple approach to summarizing an experiment is to ex-
plicitly specify the bandwidth and latencies that each individual

receiver sees. Although the set of hosts and source transmis-
sion rate are identical, a particular scheme may create a dif-
ferent overlay layout for each experimental run. While an in-
dividual host may observe vastly different performance across
the runs, this does not imply that the various overlays are of any
different quality. Therefore, we need metrics that capture the
performance of the overlay tree as a whole.

Let us consider how we summarize an experiment with regard
to a particular metric such as bandwidth or latency. For a set
of receivers, we sort the average metric value of the various
receivers in ascending order, and assign arank to each receiver
from 1 to . The worst performing receiver is assigned a rank
of 1 and the best performing receiver is assigned a rank of.
For every rank , we gather the results for the receiver with rank

across all experiments, and compute the mean. Note that the
receiver corresponding to a rankcould vary from experiment
to experiment. For example, the result for rank1 represents the
performance that the worst performing receiver would receive
on average in any experiment.

V. INTERNET EVALUATION

Our Internet experiments are conducted on a wide-area test-
bed with about 20 hosts, including a machine behind ADSL, and
hosts in Asia and Europe. Our evaluation is conducted with our
implementation of Narada that has been customized to confer-
encing applications, as described in Section III-D.

An important factor that affects the performance of a scheme
for disseminating data is the degree of heterogeneity in the en-
vironment we consider. To study the performance of schemes in
environments with different degrees of heterogeneity, we create
two groupings of hosts, theprimary setand theextended set.
Theextended setincludes all hosts in our testbed, while thepri-
mary setconsists of a subset of hosts located at university sites
in North America which are in general well connected to each
other. There is greater variation in bandwidth and latencies of
paths between nodes in theextended setas compared with the
primary set.

We begin by presenting our experimental methodology. We
then present results in a typical experiment run in Section V-B.
Section V-C provides a detailed comparison of various schemes
for constructing overlays with regard to application level per-
formance, and Section V-D presents results related to network
costs.

A. Evaluation Methodology

The varying nature of Internet performance influences the rel-
ative results of experiments done at different times. Character-
istics may change at any time and affect the performance of var-
ious experiments differently. Ideally, we should test all schemes
for disseminating data concurrently, so that they may observe
the exact same network conditions. However, this is not pos-
sible, as the simultaneously operating schemes would interfere
with each other. Therefore, we adopt the following strategy:
1) we interleave experiments with the various protocol schemes
that we compare to eliminate biases due to changes that occur
at shorter time scales and 2) we run the same experiment at dif-
ferent times of the day to eliminate biases due to changes that
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Fig. 8. Mean bandwidth averaged over all receivers as a function of time.

occur at a longer time scale. We aggregate the results obtained
from several runs that have been conducted over a two week
period.

Every individual experiment is conducted in the following
fashion. All members join the group at approximately the same
time. The source multicasts data at a constant rate and after four
minutes, bandwidth and RTT measurements are collected. We
vary the source rate to study dependence of results we see on
the source rate. Each experiment lasts for 20 min. We adopt
the above setup for all schemes, exceptsequential unicast. As
described in Section IV-C, we approximate the performance of
sequential unicastby determining the bandwidth and latency
information of the unicast path from the source to each receiver.
We do this by unicasting data from the source to each receiver
for two minutes in sequence.

B. Results With a Typical Run

The results in this subsection give us an idea of the dynamic
nature of overlay construction, and how the quality of the
overlay varies with time. Our experiment was conducted on a
weekday afternoon, using theprimary setof machines and at a
source rate of 1.2 Mb/s. The source host is at the University of
California, Santa Barbara (UCSB).

Fig. 8 plots the mean bandwidth seen by a receiver, aver-
aged across all receivers, as a function of time. Each vertical
line denotes a change in the overlay tree for the source UCSB.
We observe that it takes about 150 s for the overlay to improve,
and for the hosts to start receiving good bandwidth. After about
150 s, and for most of the session from this time on, the mean
bandwidth observed by a receiver is practically the source rate.
This indicates that all receivers get nearly the full source rate
throughout the session.

Fig. 9 plots the mean RTT to a receiver, averaged across all
receivers as a function of time. The mean RTT is about 100 ms
after about 150 s, and remains lower than this value almost
throughout the session.

Figs. 8 and 9 show that in the first few minutes of the ses-
sion, the overlay makes many topology changes at very frequent
intervals. As members gather more network information, the
quality of the overlay improves over time, and there are fewer
topology changes. In most of our runs, we find that the overlay

Fig. 9. Mean RTT averaged over all receivers as a function of time.

converges to a reasonably stable structure after about four min-
utes. Given this, we gather bandwidth and RTT statistics after
four minutes for the rest of our experiments.

The figures above also highlight the adaptive nature of our
scheme. We note that there is a visible dip in bandwidth, and
a sharp peak in RTT at around 460 s. An analysis of our logs
indicates that this was because of congestion on a link in the
overlay tree. The overlay is able to adapt by making a set of
topology changes, as indicated by the vertical lines immediately
following the dip, and recovers in about 40 s.

We have also evaluated how the RTTs to individual receivers
vary during a session and results are presented in [3]. For all
receivers, over 94% of the RTT estimates are less than 200 ms,
while over 98% of the RTT estimates are less than 400 ms.

C. Application Level Performance

We present our results that compare the performance of var-
ious schemes for disseminating data on the Internet in various
environments. We present results for two settings: 1) thepri-
mary setand a source rate of 1.2 Mb/s and 2) theextended
set and a source rate of 2.4 Mb/s. Most pairs of hosts in the
primary setcan sustain throughputs of 1.2 Mb/s and, thus, the
first scenario represents a relatively less heterogeneous environ-
ment where simpler schemes could potentially work reasonably
well. On the other hand, theextended setrepresents an environ-
ment with a much higher degree of heterogeneity. Increasing
the source rates to 2.4 Mb/s stresses the schemes more, because
many Internet paths even between well connected university
machines cannot sustain this rate. Further, several hosts in our
testbed are located behind 10 Mb/s connections, and a poorly
constructed overlay can result in congestion near the host.

1) Primary Set at 1.2-Mb/s Source Rate:Fig. 10 plots the
mean bandwidth against rank for three different schemes. Each
curve corresponds to one scheme, and each point in the curve
corresponds to the mean bandwidth that a machine of that rank
receives with a particular scheme, averaged across all runs. The
error bars show the standard deviation. Thus, they do not indi-
cate confidence in the mean, rather they imply the degree of vari-
ability in performance that a particular scheme for constructing
overlays may involve. For example, the worst performing ma-
chine (rank 1) with theRandomscheme receives a bandwidth
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Fig. 10. Mean bandwidth versus rank at 1.2-Mb/s source rate for theprimary
setof machines.

Fig. 11. Mean RTT versus rank at 1.2-Mb/s source rate for theprimary setof
machines.

of a little lower than 600 kb/s on average. We use this method
of presenting data in all our comparison results.1

We wish to make several observations. First, thesequential
unicastcurve indicates that all but one machine get close to the
source rate, as indicated by one of the top lines with a dip at
rank 1. Second,Naradais comparable tosequential unicast. It
is able to ensure that even the worst-performing machine in any
run receives 1150 kb/s on average. Interestingly,Naradaresults
in much better performance for the worst performing machine
as compared withsequential unicast. It turns out this is because
of the existence of pathologies in Internet routing. It has been
observed that Internet routing is suboptimal and there often ex-
ists alternate paths between end system that have better band-
width and latency properties than the default paths [19]. Third,
Narada results in consistently good performance, as indicated
by the small standard deviations. Fourth, theRandomscheme is
suboptimal in bandwidth. On average, the worst performing ma-
chine with theRandomscheme (rank 1) gets a mean bandwidth
of about 600 kb/s. Further, the performance ofRandomcan be
quite variable as indicated by the large standard deviation. We
believe that this poor performance withRandomis because of
the inherent variability in Internet path characteristics, even in
relatively well connected settings.

Fig. 11 plots mean RTT against rank for the same set of
experiments. First, the RTT of the unicast paths from the source
to the recipients can be up to about 150 ms, as indicated by
the lowest line corresponding tosequential unicast. Second,

1The curves are slightly offset from each other for clarity of presentation.

Fig. 12. Mean bandwidth versus rank at 2.4-Mb/s source rate for theextended
setof machines.

Fig. 13. Mean RTT versus rank at 2.4-Mb/s source rate for theextended setof
machines.

Narada is good at optimizing the overlay for delay. The worst
machine in any run has an RTT of about 160 ms on average.
Third, Randomperforms considerably worse with an RTT of
about 350 ms for the worst machine on average.Randomcan
have poor latencies because of suboptimal overlay topologies
that may involve crisscrossing the continent. In addition,
Random is unable to avoid delays related to congestion,
particularly near the participating end hosts.

2) Extended Set at 2.4-Mb/s Source Rate:We stress our
scheme for constructing overlays by considering extremely
heterogeneous environments as represented by theextended
set. Given the poor performance ofRandomeven in relatively
less heterogeneous settings, we do not present results here.
Figs. 12 and 13 plot the bandwidth and RTT against host ranks
for the four schemes of interest.

Thesequential unicastcurves show that there are quite a few
members that have low bandwidth and high latencies from the
source, which indicates the heterogeneity in the set we consider.
Even in such a heterogeneous setting,Naradais able to achieve
a performance close to thesequential unicast. Apart from the
less well-connected hosts (ranks 1–5), all other members get
bandwidths of at least 1.8 Mb/s, and see RTTs of less than
250 ms on average. For ranks 1–5,Naradais able to exploit In-
ternet routing pathologies and provide better performance than
sequential unicast. A particularly striking example is two ma-
chines in Taiwan, only one of which has good performance
to machines in North America. In our runs, the machine with
poorer performance is able to achieve significantly better per-
formance by connecting to the other machine in Taiwan.
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TABLE I
AVERAGE NORMALIZED RESOURCEUSAGE OFDIFFERENTSCHEMES

TABLE II
AVERAGE OVERHEAD WITH NARADA AND A BREAKDOWN OF THEOVERHEAD

3) Choice of Network Metrics:In addition to the schemes
listed here, we have evaluated other schemes for constructing
overlays in [3]. Overall our results indicate that it is important
to explicitly optimize for both latency and bandwidth while sup-
porting applications such as conferencing. Considering latency
alone, or bandwidth alone leads to degraded performance. Fur-
ther, the performance with static delay based metrics such as
propagation delay is poor. The reader is referred to [3] for fur-
ther details.

D. Network Level Metrics

Table I compares the mean normalized resource
usage (Section IV-B) of the overlay trees produced by the
various schemes for different environments and source rates.
The values are normalized with respect to the resource usage
with DVMRP. Thus, we would like the normalized resource
usage to be as small as possible, with a value of 1.00 representing
an overlay tree that has the same resource usage as DVMRP.
The trees constructed by Narada can change over time—we
consider the final tree produced at the end of an experiment.
However, we observe that the overlays produced by these
schemes are reasonably stable after about four minutes.

We note from Table I that Narada can result in trees that make
30%–50% more use of resources than DVMRP. Further, Naive
unicast trees which have all recipients rooted at the source, and
schemes such asRandomthat do not explicitly exploit network
information have a high resource usage. We have also deter-
mined the resource usage of Min-Span, the minimum spanning
tree of the complete graph of all members, computed by esti-
mating the delays of all links of the complete graph. Minimum
spanning trees are known to be optimal with respect to resource
usage, and as Table I shows, have lower resource usage than
DVMRP. This indicates that an End System Multicast architec-
ture can indeed make as efficient, if not better use of network re-
sources than IP multicast. However, while minimum spanning
trees are efficient from the network perspective, it is not clear
that they perform well from the application perspective.

Table II summarizes the protocol overhead (Section IV-B) in-
volved in Narada, along with a breakdown of the main factors

that contribute to the overhead. We find that the average over-
head is between 10% to 15% across all settings. This is an in-
dication that even simple heuristics that we have implemented
can keep the overall overhead low. Further, more than 90% of
the overhead is due to members probing each other for band-
width. Other sources of overhead contribute just 3%–7% of the
overhead. These include exchange of routing messages between
neighbors, group management algorithms to keep the overlay
connected, and probes to determine the delay and routing state
of remote members. Our current work is investigating the use of
light-weight probing techniques to further reduce the overhead
due to bandwidth measurements.

VI. SIMULATION

Section V demonstrates that an End System Multicast archi-
tecture can perform quite well in realistic Internet settings. In
this section, we study the performance issues with larger group
sizes using simulation experiments. We begin by presenting fac-
tors that affect the evaluation. We then present our simulation
setup and our results.

A. Factors Affecting Performance

A key factor that affects our comparison results is the
topology model used in our simulations. We used three
different models to generate backbone topologies for our simu-
lation. For each model of the backbone, we modeled members
as being attached directly to the backbone topology. Each
member was attached to a random router, and was assigned a
random delay of 1–4 ms.

Waxman: The model considers a set ofvertices on a square
in the plane and places an edge between two points with a prob-
ability of , where is the length of the longest pos-
sible edge, is a random variable between 0 and, and and

are parameters. We use the Georgia Tech. [22] random graph
generators to generate topologies of this model.

Mapnet: Backbone connectivity and delay are modeled
after actual ISP backbones that could span multiple continents.
Connectivity information is obtained from the CAIDA Mapnet
project database [9]. Link delays are assigned based on geo-
graphical distance between nodes.

Autonomous System Map (ASMap): Backbone connectivity
information is modeled after inter-domain Internet connectivity.
This information is collected by a route server from BGP routing
tables of multiple geographically distributed routers with BGP
connections to the server [8]. This data has been analyzed in [6]
and has been shown to satisfy certain power laws. Random link
delays of 8–12 ms was assigned to each physical link.

In our simulations, we used backbone topology sizes con-
sisting of around 1070 members and multicast groups of up to
256 members. We used a Waxman topology consisting of 1024
routers and 3145 links, an ASMap topology consisting of 1024
routers and 3037 links and a Mapnet topology consisting of
1070 routers and 3170 links. We have also studied the impact
of varying topology size for each topology model in [4].

With Narada, each member in the data delivery tree has a
degree that is dynamically configured based on the available
bandwidth near a member. If a member has too many children,
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Fig. 14. Number of physical links with a given stress versus stress for naive
unicast, Narada, and DVMRP.

this could result in congestion near the member and a decrease
in the available bandwidth. Narada can adapt dynamically to
such a situation by detecting the fall in bandwidth and having
children move away. However, given that our simulator does
not consider Internet dynamics, we model the impact of this
artificially by imposing restrictions on the degree. We do this
using a parameter called thefanout range. The fanout range of
a member is the minimum and maximum number of neighbors
each member strives to maintain in the mesh. An increase of
the fanout range could decrease mesh diameter and result in
better delay performance. However, it could potentially result
in higher stress on links near members. All results presented
here assume a fanout range of3–6 . We have investigated the
impact of varying fanout range and the reader is referred to [4]
for more details.

B. Simulation Setup

All experiments we report here are conducted in the following
manner. A fixed number of members join the group in the first
100 s of the simulation in random sequence. A member that
joins is assumed to contain a list of all members that joined the
group previously. After 100 s, there is no further change in group
membership. One sender is chosen at random to multicast data
at a constant rate. We allow the simulation to run for 40 min.
In all experiments, neighbors exchange routing messages every
30 s. Each member probes one random group member every 10 s
to evaluate performance.

C. Simulation Results

For all results in this section, we compute each data point
by conducting 25 independent simulation experiments and we
plot the mean with 95% confidence intervals. Due to space con-
straints, we present plots of selected experiments and summa-
rize results of other experiments.

1) Stress: To get a better understanding of the stress metric,
we consider the performance seen in a typical experiment con-
ducted using a topology generated by the Waxman model and
a group size of 128 members. One of the members is picked
as source at random, and we evaluate the stress of each phys-
ical link. We study the variation of physical link stress under
Narada and compare the results we obtain with physical stress
under DVMRP and naive unicast in Fig. 14. Here, the horizontal
axis represents stress and the vertical axis represents the number

Fig. 15. Worst case physical link stress versus group size for topologies for
three models using Narada.

of physical links with a given stress. The stress of any phys-
ical link is at most one for DVMRP, indicated by a solitary dot.
Under both naive unicast and Narada, most links have a small
stress—this is to be expected. However, the significance lies in
the tail of the plots. Under naive unicast, one link has a stress of
127 and quite a few links have a stress above 16. This is unsur-
prising considering that links near the source are likely to expe-
rience high stress. Narada, however, distributes the stress more
evenly across physical links, and no physical link has a stress
larger than nine. While this is high compared with DVMRP, it
is a 14-fold improvement over naive unicast.

Fig. 15 plots the variation of worst case physical link stress
against group size for three topologies with Narada. Each curve
corresponds to one topology model. Each point corresponds to
the mean worst case stress for a particular group size, averaged
over 25 experiments, and plotted with 95% confidence intervals.
We observe that the curves are close to each other for small
group sizes but seem to diverge for larger group sizes. Further,
for all topologies, worst case stress increases with group size.
Thus, for a group size of 64, mean worst case stress is about
5–7 across the three topologies, while for a group size of 256, it
is about 8–14. We believe this increase of stress with group size
is an artifact of the small topologies in a simulation environment
relative to the actual Internet backbone. The reader is referred
to [4] for a further discussion.

Finally, we have also evaluated stress with Random. Our re-
sults indicate that Random tends to result in slightly higher
stress than Narada across all topology models, and we omit the
results for clarity.

2) Delay Results:Fig. 16 plots the mean delay experienced
by a receiver using Random, Narada and DVMRP, as a function
of group size for three different topology models. Each curve
corresponds to a particular scheme, and a particular topology
model. Each point represents the mean receiver delay for that
group size averaged over 25 experiments, plotted with 95% con-
fidence intervals. For example, the mean receiver delay with
Narada using the ASMap topology is about 50 ms for a group
size of 16.

The curves are bunched into three families: the topmost set
of curves correspond to Random, the lowest set corresponds
to DVMRP and the set in between corresponds to Narada. For
a range of group sizes and all topology models, Narada out-
performs Random, but does not do as well as DVMRP. For



1468 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 8, OCTOBER 2002

Fig. 16. Mean receiver delay with Narada, Random, and DVMRP as a function
of group size for three topology models. The curves are bunched into three
families depending on the scheme used. Within each family, the legend indicates
the performance for a particular topology model.

Fig. 17. Effect of group size on NRU: Narada, Random, and Naive unicast.

example, for a group size of 16 members, the mean receiver
delay with Random varies between 70–80 ms depending on
the topology model, while the mean delay with Narada is be-
tween 40–55 ms, and the mean delay with DVMRP is around
25–30 ms.

For all topology models, the mean delay with DVMRP is rel-
atively independent of group size. However, the performance of
both Narada and Random tends to degrade with larger group
size. For a group size of 256 members, the mean delay with
Narada is about 70–105 ms and about 150–170 ms for Random,
depending on the topology model.

3) Resource Usage:Fig. 17 plots the NRU against group
size for the Waxman model alone. The results are normalized
with respect to IP multicast. The lowest curve corresponds to
Narada, while the two upper curves correspond to Random
and Naive unicast respectively. First, Narada consumes less
network resources than Naive unicast and Random, across all
group sizes. For a group size of 16, the NRU is about 1.3 for
Narada, while the NRU is about 1.6 for Naive unicast and
Random. Second, NRU tends to increase with group size for
all schemes. For a group size of 128, the NRU for Narada is
about 1.9 and 2.4 for Naive unicast and Random. While these
results are reasonable, we believe the performance of Narada
with regard to resource usage could be even more significant if
members are clustered. We have repeated this study with the

Mapnet and ASMap topologies and observe similar trends. For
all topologies, the NRU is at most 1.9 for a group size of 128.

4) Protocol Overhead:In our simulations experiments,
protocol overheaddoes not measure the cost of bandwidth
probes, which we found as the chief source of overhead in our
Internet results. Thus, this metric measures overhead mainly
due to routing and group management associated with Narada.
We find that the protocol overhead due to these factors increases
linearly with group size, however, this is not significant for the
group sizes we consider. For a source data rate of 128 Kb/s, the
protocol overhead is about 2% for a group size of 64 members,
and 4% for a group size of 128 members. Finally, we note that
the control traffic that Narada introduces is independent of
source data rate and, thus, the protocol overhead is even lower
for higher source rates.

VII. D ISCUSSION

We begin by summarizing results from our simulation and
Internet experiments and then discuss some open issues.

A. Summary of Results

Our key results are as follows.
Application Level Performance: Our Internet results

demonstrate that End System Multicast can meet the bandwidth
requirements of applications and at the same time achieve low
latencies. In Internet experiments with theprimary set, all
hosts sustain over 95% of the source rate and achieve latencies
lower than 80 ms, with theextended set, the mean performance
attained by each receiver is comparable to the performance of
the unicast path from the source to that receiver. Our simulation
results match these numbers, and indicate that the penalty
in delay is low even for medium size groups. For a range of
topology models, the ratio of the mean delay with Narada
relative to the mean delay with DVMRP is less than 1.7 for
groups of size 16, and less than 3.5 for groups of 256 members.

Stress: Our simulation results demonstrate that Narada re-
sults in a low worst case stress for small group sizes. For ex-
ample, for a group size of 16, the worst case stress is about five.
While for larger group sizes, worst case stress may be higher,
it is still much lower than unicast. For example, for a group of
128 members, Narada reduces worst case stress by a factor of
14 compared with unicast.

Resource Usage: Our Internet results demonstrate that
Narada may incur a resource usage that is about 30%–50%
higher than with DVMRP, while it can improve resource usage
by 30%–45% compared with naive unicast. Again, our simula-
tion results are consistent with our Internet results, and indicate
that the performance with respect to this metric is good even for
medium sized groups. The resource usage is about 35%–55%
higher than with DVMRP for group sizes of 16 members, and
about a factor of two higher for group sizes of 128 members.
Further, we believe that the performance in resource usage may
be even better if we consider clustered group members.

Protocol Overhead: Our Internet experiments demonstrate
that Narada can have a protocol overhead of about 10%–15%
for groups up to 20 members. Over 90% of this overhead is
members probing each other for bandwidth. To reduce the cost



CHU et al.: CASE FOR END SYSTEM MULTICAST 1469

of bandwidth probes further, we are currently exploring light-
weight probing techniques based on RTT measurements, trans-
fers of 10 kB data chunks and bottleneck bandwidth measure-
ments. Our initial experience suggests that these light-weight
probing techniques are promising and can be quite effective at
controlling overhead. Our simulation experiments on the other
hand do not involve bandwidth probes. Our results indicate that
the overhead due to other factors (e.g., routing and group man-
agement) is not significant for the group sizes we consider.

B. Open Issues

Overall our results suggest that End System Multicast can
achieve good performance for small and medium sized groups
involving tens to hundreds of members. The question then is:
can an End System Multicast architecture scale to support much
larger group sizes? Based on our experience, we believe the fol-
lowing issues need to be addressed.

As the group size increases, the number of overlay hops
between any pair of members increases and, hence, the delay
between them potentially increases (e.g., Fig. 16). A careful
analysis that investigates fundamental performance limits of an
overlay approach for large group sizes would provide valuable
insight on the feasibility of the End System Multicast architec-
ture for large scale interactive applications.

While we have demonstrated that End System Multicast
can ensure good application performance over longer time
scales, we have not investigated performance of applications
over shorter time scales. Events such as failure of members,
members leaving the group, or network congestion can po-
tentially result in poor transient performance, particularly for
interactive applications. While this is an issue that must be
investigated even for smaller groups, it could be a greater
concern for larger group sizes, as they could encounter a much
higher frequency of such events.

A self-improving overlay approach incurs overhead due to
active measurements, and takes time to converge into an effi-
cient structure. As group size increases, it is not clear whether
an End System Multicast approach can keep probe overhead low
and construct efficient overlays quickly.

While the above issues need to be addressed to determine
the viability of an End System Multicast approach for larger
group sizes, certain design decisions taken in the current ver-
sion of the Narada protocol may prevent it from scaling to
larger group sizes. In Narada, each member maintains infor-
mation regarding all other group members. This is a deliberate
design choice that has been motivated by two reasons. First,
Narada does not rely on external nodes for normal protocol
operation. While it does use an out-of-band mechanism for
bootstrapping, failure of this mechanism prevents new mem-
bers from joining the group, but existing group members may
continue to communicate with each other. Second, Narada has
been designed with the objective of reestablishing connectivity
among participating group members even under failure modes
involving the simultaneous death of a significant fraction of
group members. While maintaining full group membership in-
formation helps to achieve these goals, it leads to the concern

that the costs of maintaining such information may be prohib-
itively expensive for larger sized groups.

In this paper, we have made minimal assumptions regarding
support from network infrastructure, both in terms of the ro-
bustness properties of end systems, and the network information
available for overlay construction. We believe that scalability
can be achieved more easily by making additional assumptions
about the composition of the end systems, the failure models of
hosts and the availability of external mechanisms for collecting
network information. We describe recent efforts in this direction
in Section VIII. Further, we are currently exploring these issues
in the context of proxy-based End System Multicast architec-
tures. Such architectures consist of a set of more robust or stable
nodes that are not likely to all fail with high probability. This can
greatly simplify the design of self-organizing protocols, and en-
able more scalable solutions. In addition, proxies are assumed
to be persistent with long-lived relationships among them. This
reduces the need for active measurements in creating overlays
and helps in quick instantiation of efficient overlays.

VIII. R ELATED WORK

Since the initial proposal of End System Multicast [4], several
other researchers have begun advocating an overlay based ap-
proach for multicast communication [2], [10], [13], [15]. Archi-
tecturally, proposals for overlay based multicast have primarily
differed on whether they assume a peer-to-peer architecture, or
a proxy (infrastructure) based architecture. Yoid [10] and ALMI
[15] emphasize peer-to-peer settings. In contrast, Scattercast
[2], and Overcast [13] argue for infrastructure support. We view
both these architectures as interesting and plan to look at the
challenges and constraints specific to each architecture in the
future. Further, ALMI [15] advocates a completely centralized
solution, and places all responsibility for group management,
and overlay computation with a central controller.

As the research community has begun to acknowledge the
importance of overlay based architectures, self-organizing pro-
tocols for constructing overlays have emerged as an important
field of study. Most of the earlier proposed protocols fall in two
broad categories that we summarize below.

Protocols like Yoid [10], BTP [11], and Overcast [13] con-
struct trees directly—that is, members explicitly select their par-
ents from among the members that they know. While Overcast
targets single source broadcasting applications, and constructs
trees rooted at the source, Yoid constructs a single shared tree
for all sources.

Narada and Gossamer [2] construct trees in a two-step
process: they first construct efficient meshes among partici-
pating members, and in the second step construct spanning
trees of the mesh using well-known routing algorithms. A
mesh-based approach has been motivated by the need to
support multisource applications, such as conferencing. Single
shared trees are not optimized for the individual source and
are susceptible to a central point of failure. An alternative to
constructing shared trees is explicitly constructing multiple
overlay trees, one tree for each source. However, this approach
needs to deal with the overhead of maintaining and optimizing
multiple overlays.
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Recently, researchers have begun designing self-organizing
protocols that can scale to very large group sizes. Again, these
newer protocols have taken two different approaches.

Delaunay Triangulations [14], CAN [16], and Bayuex [23]
assign to members addresses from some abstract coordinate
space, and neighbor mappings are based on these addresses.
For example, CAN assigns logical addresses from cartesian
coordinates on an-dimensional torus. [14] assigns points to
a plane and determines neighbor mappings corresponding to
the Delaunay triangulation of the set of points. Determining
neighbor mappings based on member addresses enables routing
of messages based on the addresses, and full-fledged routing
protocols such as distance vector algorithms are not required.
Each member needs to maintain knowledge about only a small
subset of members enabling the protocols to scale better to
larger group sizes. However, in contrast to tree and mesh-based
approaches, these protocols impose rules on neighbor relation-
ships that are dictated by addresses assigned to hosts rather
than performance. This may involve a performance penalty
in constructed overlays and could complicate dealing with
dynamic metrics such as available bandwidth.

The Nice project [1] and Kudos [12] achieve better scaling
properties than Narada by organizing members into hierarchies
of clusters. Kudos constructs a two level hierarchy with a Narada
like protocol at each level of the hierarchy. Nice constructs a
multilevel hierarchy, and does not involve use of a traditional
routing protocol. A concern with hierarchy-based approaches is
that they complicate group management, and need to rely on
external nodes to simplify failure recovery.

To our knowledge, ours is perhaps the first work that has con-
ducted a detailed Internet evaluation to analyze the feasibility of
an overlay based architecture. Our work has shown that it is im-
portant to dynamically adapt to bandwidth and latency [3], and
we have incorporated techniques in Narada that help to achieve
this goal. In contrast, most other works have considered delay
based metrics, and not dealt with important issues pertaining to
the dynamic nature of network metrics.

IX. CONCLUSION

We have made two contributions in this paper. First, we have
shown that for small and medium sized multicast groups, it is
feasible to use an end system overlay approach toefficiently
support all multicast related functionality including member-
ship management and packet replication. The shifting of mul-
ticast support from routers to end systems, while introducing
some performance penalties, has the potential to address most
problems associated with IP multicast. We have shown, with
both simulation and Internet experiments, that the performance
penalties are low in the case of small and medium sized groups.
We believe that the potential benefits of transferring multicast
functionality from end systems to routers significantly outweigh
the performance penalty incurred.

Second, we have proposed one of the first self-organizing and
self-improving protocols that constructs an overlay network on
top of a dynamic, unpredictable and heterogeneous Internet en-
vironment without relying on a native multicast medium. We

also believe this is among the first works that attempts to system-
atically evaluate the performance of a self-organizing overlay
network protocol and the tradeoffs in using overlay networks.
Further, we believe that the techniques and insights developed
in this paper are applicable to overlay networks in contexts other
than multicast.

Our current work involves studying mechanisms that can en-
sure robust transient performance of applications in environ-
ments with highly dynamic group membership, and highly vari-
able network characteristics. Further, while in this work we have
made conservative assumptions regarding the composition of
end systems and their failure modes, we are currently investi-
gating how we may take advantage of proxy-based End System
Multicast architectures.
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