
Assignment 6/7: Sample Solutions

1. (a) By definition a
[t]
i,j , the i, j-th entry of A[t], satisfies a

[t]
i,j = 1, if there is

a path of exactly t edges from vertex vi to vertex vj in g (and a
[t]
i,j = 0,

otherwise). Similarly, a
〈t〉
i,j , the i, j-th entry of A〈t〉, satisfies a

〈t〉
i,j = 1,

if there is a path of at most t edges from vertex vi to vertex vj in

G (and a
〈t〉
i,j = 0, otherwise). Thus, a

[0]
i,j = 1, if and only if i = j,

a
[1]
i,j = 1, if and only if (vi, vj) ∈ E, and a

〈1〉
i,j = 1 if and only if i = j or

(vi, vj) ∈ E (that is a
〈1〉
i,j = a

[0]
i,j ∨ a

[1]
i,j)..

Now suppose that a
[2]
i,j = 1. This holds if and only if there exists a

vertex vk such that (vi, vk) ∈ E and (vk, vj) ∈ E, which is true if and
only if

∨
k(ai,k ∧ ak,j), theij-th entry of the Boolean product of A[1]

with itself, is equal to 1.

Similarly, a
〈2〉
i,j = 1 holds if and only if a

[2]
i,j = 1 or a

[1]
i,j = 1 or a

[0]
i,j = 1,

which holds if and only if the ij-th entry of the Boolean product of
A[1] with itself, or the Boolean product of A[1] with the identity matrix
I, or the identity matrix I itself, is equal to 1. But this holds exactly
when the ij-th entry of the Boolean product of A〈1〉 = (A[1] ∨ I) with
itself is equal to 1.

(b) This follows, by induction on t. In particular, (i) the basis of the
induction (t = 1) is trivial, and (ii) the induction step follows by the
observation that A[t] = A[t−1] · A[1] and A〈t〉 = A〈t−1〉 · A〈1〉, using
essentially the same argument as in part (a).

(c) Here it suffices to observe that there exists a path in G joining vertex
vi to vertex vj if and only if there exists such a path with at most
n−1 edges (since any longer path must contain a cycle whose removal
would produce a path with fewer edges). Thus a∗ij = 1 if and only if

a
〈t〉
i,j = 1, for all t ≥ n− 1.

2. (a) As suggested in the hint, we can represent the priority queue of d-
values (maintained by Dijkstra’s algorithm) as a list structure L[0 :
m + 1], where L[i] points to a doubly-connected list containing all
vertices v ∈ V − S with d[v] = i, and L[m + 1] points to a doubly-
connected list of vertices v ∈ V − S with d[v] > m. We maintain an
index max of the maximum d-value extracted from the priority queue

1

so far (initially max = 0). We exploit the fact that max increases
monotonically over time.

We EXTRACT-MIN by:

while (L[max] = nil) max← max + 1
extract the first element from L[max]

We DECREMENT-KEY(x, key) by:

remove x from its list
add x to list L[key]

Assuming that the lists are doubly-linked (for fast removal) the total
cost for all priority queue operations is O(n+m).

(b) Since c1(u, v) = bc(u, v)/2k−1c ∈ {0, 1}, it follows that δ1(s, v) ≤
n − 1 ≤ m (since we can assume that our graph is connected). The
result follows from part (a).

(c) Suppose that c(u, v) =
∑

0≤j≤k bj2
j . That is, c(u, v) = (bk−1bk−2 · · · b0)2.

Then ci(u, v) = (bk−1 · · · bk−i)2 and ci−1(u, v) = (bk−1 · · · bk−i+1)2.
Hence, ci(u, v) = 2ci−1(u, v) + bk−i.

Suppose that path Pi−1 realizes δi−1(s, v) and path Pi realizes δi(s, v).
That is ci−1(Pi−1) = δi−1(s, v) and ci(Pi) = δi(s, v). Then
δi(s, v) ≤ ci(Pi−1) ≤ 2ci−1(Pi−1) + |P | ≤ 2δi−1(s, v) + n− 1 and
δi(s, v) = ci(Pi) ≥ 2ci−1(Pi) ≥ 2δi−1(s, v).

(d) Since δi−1(s, v) ≤ δi−1(s, u) + ci−1(u, v), by the optimality condition
for δi−1, it follows that
2δi−1(s, v) ≤ 2δi−1(s, u) + 2ci−1(u, v) ≤ 2δi−1(s, u) + ci(u, v). Thus,
ĉi(u, v) ≥ 0.

(e) Let P be any path from s to v: P = 〈v0, v1, . . . , vk〉. Then

ĉi(P) =

k∑
j=1

ĉi(vj−1, vj)

=

k∑
j=1

[ci(vj−1, vj) + 2δi−1(s, vj−1 − 2δi−1(s, vj)]

= [

k∑
j=1

[ci(vj−1, vj)]− 2δi−1(s, v)

= ci(P)− 2δi−1(s, v).

Hence δ̂i(s, v) = δi(s, v) − 2δi−1(s, v), and δ̂i(s, v) ≤ n − 1 ≤ m (by
part (c)).

2

(f) Given δi−1(s, v), for all v ∈ V , construct ĉi values and compute

δ̂i−1(s, v), for all v ∈ V , using (e). The cost is O(m) by (a). Now
construct δi(s, v), for all v ∈ V , using (e). Repeating this for i from
2 to k (= lgC), we construct δk(s, v) = δ(s, v), for all v ∈ V , in
O(E lgC) time in total.

3. (a) Suppose the G, k is an instance of the vertex cover problem. If we
transform G to the edge coloured graph H as described, and we
choose s = v′0 and t = v′n, then we claim that H has a path from
s to t using at most k colours if and only if G has a vertex cover
of size at most k. Suppose that G has a vertex cover {v′i1 , . . . v

′
ik
}.

Then every edge ej in EG is incident on at least one of the vertices
in this set. It follows from the construction that every vertex v′j of
H has an incoming edge coloured by one of the k colours ci1 , . . . , cik .
Hence, there is a path from s to t in H using colours in the set
ci1 , . . . , cik . Similarly, if there is a path from s to t in H using colours
in the set ci1 , . . . , cik , then it follows from the construction that every
vertex v′j of H has an incoming edge coloured by one of the k colours
ci1 , . . . , cik . Thus every edge ej in EG is incident on at least one of
the vertices in the set {v′i1 , . . . v

′
ik
}, that is {v′i1 , . . . v

′
ik
} is a vertex

cover of G.

(b) The reduction is a polynomial time reduction since H has |EG| ver-
tices, 2|EG| edges and |VG| colours (and the decision as to which
vertices to connect with a given edge and which colour to assign to
a given edge can be made in O(1) time).

(c) It follows from the reduction above that the decision version of the
minimum colour s − t path problem is NP-hard (since the vertex
cover problem is NP-hard). To show NP-completeness it remains
to argue that the decision version of the minimum colour s− t path
problem is in NP. This follows because a yes-instance of the decision
version of the minimum colour s− t path problem can be certified by
demonstrating a path from s to t using r colours (which is trivial to
verify in polynomial time in the size of H).

4. (a) We use the notation α to denote the negation of the literal α. Suppose
there is an edge from literal αi to a literal αi+1 in G. Then the
disjunct αi ∨ αi+1 must be a disjunct in E . This means that any
truth assignment that satisfies E and assigns the truth value true to
the literal αi must assign true to the literal αi+1. The more general
result, that if there is a path from a literal α to a literal β in G, then
any satisfying truth assignment of E that assigns true to α must also
assign true to β, follows by induction of the length of the path.

(b) From part (a) we conclude that if there is a path from a literal α
to its negation α, and a path from α to α, then any satisfying truth
assignment of E that assigns true to α must also assign assign true

3

to α (and hence false to α), and any satisfying truth assignment
of E that assigns true to α must also assign true to α. Since both
assignments lead to a contradiction it follows that E is not satisfiable.

(c) We argue by induction on the number of variables in our formula,
noting that any formula with zero variable is trivially satisfiable.

Suppose that for all literals α, if α is reachable from α in G then α is
not reachable from α in G. We describe a greedy algorithm to con-
struct a satisfying truth assignment. Choose a literal α1 arbitrarily
that has the property that there is no path in G from α1 to α1, and
assign the value true to α1 and all literals reachable from α1 in G.

Since for any path from α to β inG there is a corresponding (reversed)
path from β to α, it follows that this partial truth assignment is
consistent i.e, it does not assign true to any literal β as well as
its negation β (otherwise, α1 would be reachable from α1, by the
concatenation of paths from α1 to β and β to α1).

Furthermore, this partial truth assignment satisfies all disjuncts that
contain one of the literals reachable from α1, or their negation. (If
a disjunct D contains literal β that is reachable from α1 then it is
obviously satisfied by the assignment true to β. On the other hand if
D contains the literal β, for some literal β that is reachable from α1,
then the other literal in D is reachable from α1.) Thus, if we remove
all such disjuncts we have a smaller formula, with fewer variables to
which the induction hypothesis applies, so the greedy algorithm can
continue and choose another literal, say α2 whose truth value was
not forced by the assignment to α1.

4

