Assignment 6/7: Sample Solutions

1. (a) By definition $a_{i,j}^{[t]}$, the i, j-th entry of $A^{[t]}$, satisfies $a_{i,j}^{[t]} = 1$, if there is a path of exactly t edges from vertex v_i to vertex v_j in g (and $a_{i,j}^{[t]} = 0$, otherwise). Similarly, $a_{i,j}^{\langle t \rangle}$, the i, j-th entry of $A^{\langle t \rangle}$, satisfies $a_{i,j}^{\langle t \rangle} = 1$, if there is a path of at most t edges from vertex v_i to vertex v_j in G (and $a_{i,j}^{\langle t \rangle} = 0$, otherwise). Thus, $a_{i,j}^{[0]} = 1$, if and only if i = j, $a_{i,j}^{[1]} = 1$, if and only if $(v_i, v_j) \in E$, and $a_{i,j}^{\langle 1 \rangle} = 1$ if and only if i = j or $(v_i, v_j) \in E$ (that is $a_{i,j}^{\langle 1 \rangle} = a_{i,j}^{[0]} \lor a_{i,j}^{[1]}$)..

Now suppose that $a_{i,j}^{[2]} = 1$. This holds if and only if there exists a vertex v_k such that $(v_i, v_k) \in E$ and $(v_k, v_j) \in E$, which is true if and only if $\bigvee_k (a_{i,k} \wedge a_{k,j})$, the *ij*-th entry of the Boolean product of $A^{[1]}$ with itself, is equal to 1.

Similarly, $a_{i,j}^{\langle 2 \rangle} = 1$ holds if and only if $a_{i,j}^{[2]} = 1$ or $a_{i,j}^{[1]} = 1$ or $a_{i,j}^{[0]} = 1$, which holds if and only if the *ij*-th entry of the Boolean product of $A^{[1]}$ with itself, or the Boolean product of $A^{[1]}$ with the identity matrix I, or the identity matrix I itself, is equal to 1. But this holds exactly when the *ij*-th entry of the Boolean product of $A^{\langle 1 \rangle} = (A^{[1]} \lor I)$ with itself is equal to 1.

- (b) This follows, by induction on t. In particular, (i) the basis of the induction (t = 1) is trivial, and (ii) the induction step follows by the observation that $A^{[t]} = A^{[t-1]} \cdot A^{[1]}$ and $A^{\langle t \rangle} = A^{\langle t-1 \rangle} \cdot A^{\langle 1 \rangle}$, using essentially the same argument as in part (a).
- (c) Here it suffices to observe that there exists a path in G joining vertex v_i to vertex v_j if and only if there exists such a path with at most n-1 edges (since any longer path must contain a cycle whose removal would produce a path with fewer edges). Thus $a_{ij}^* = 1$ if and only if $a_{i,i}^{\langle t \rangle} = 1$, for all $t \ge n-1$.
- 2. (a) As suggested in the hint, we can represent the priority queue of dvalues (maintained by Dijkstra's algorithm) as a list structure L[0 : m+1], where L[i] points to a doubly-connected list containing all vertices $v \in V - S$ with d[v] = i, and L[m+1] points to a doublyconnected list of vertices $v \in V - S$ with d[v] > m. We maintain an index max of the maximum d-value extracted from the priority queue

so far (initially max = 0). We exploit the fact that max increases monotonically over time.

We EXTRACT-MIN by:

while $(L[\max] = nil) \max \leftarrow \max + 1$ extract the first element from $L[\max]$

We DECREMENT-KEY(x, key) by:

remove x from its list add x to list L[key]

Assuming that the lists are doubly-linked (for fast removal) the total cost for all priority queue operations is O(n+m).

- (b) Since $c_1(u,v) = \lfloor c(u,v)/2^{k-1} \rfloor \in \{0,1\}$, it follows that $\delta_1(s,v) \leq n-1 \leq m$ (since we can assume that our graph is connected). The result follows from part (a).
- (c) Suppose that $c(u, v) = \sum_{0 \le j \le k} b_j 2^j$. That is, $c(u, v) = (b_{k-1}b_{k-2}\cdots b_0)_2$. Then $c_i(u, v) = (b_{k-1}\cdots b_{k-i})_2$ and $c_{i-1}(u, v) = (b_{k-1}\cdots b_{k-i+1})_2$. Hence, $c_i(u, v) = 2c_{i-1}(u, v) + b_{k-i}$. Suppose that path P_{i-1} realizes $\delta_{i-1}(s, v)$ and path P_i realizes $\delta_i(s, v)$. That is $c_{i-1}(P_{i-1}) = \delta_{i-1}(s, v)$ and $c_i(P_i) = \delta_i(s, v)$. Then $\delta_i(s, v) \le c_i(P_{i-1}) \le 2c_{i-1}(P_{i-1}) + |P| \le 2\delta_{i-1}(s, v) + n - 1$ and $\delta_i(s, v) = c_i(P_i) \ge 2c_{i-1}(P_i) \ge 2\delta_{i-1}(s, v)$.
- (d) Since $\delta_{i-1}(s, v) \leq \delta_{i-1}(s, u) + c_{i-1}(u, v)$, by the optimality condition for δ_{i-1} , it follows that $2\delta_{i-1}(s, v) \leq 2\delta_{i-1}(s, u) + 2c_{i-1}(u, v) \leq 2\delta_{i-1}(s, u) + c_i(u, v)$. Thus, $\hat{c}_i(u, v) \geq 0$.
- (e) Let P be any path from s to v: $P = \langle v_0, v_1, \dots, v_k \rangle$. Then

$$\hat{c}_{i}(P) = \sum_{j=1}^{k} \hat{c}_{i}(v_{j-1}, v_{j})$$

$$= \sum_{j=1}^{k} [c_{i}(v_{j-1}, v_{j}) + 2\delta_{i-1}(s, v_{j-1} - 2\delta_{i-1}(s, v_{j})]]$$

$$= [\sum_{j=1}^{k} [c_{i}(v_{j-1}, v_{j})] - 2\delta_{i-1}(s, v)$$

$$= c_{i}(P) - 2\delta_{i-1}(s, v).$$

Hence $\hat{\delta}_i(s,v) = \delta_i(s,v) - 2\delta_{i-1}(s,v)$, and $\hat{\delta}_i(s,v) \le n-1 \le m$ (by part (c)).

- (f) Given $\delta_{i-1}(s, v)$, for all $v \in V$, construct \hat{c}_i values and compute $\hat{\delta}_{i-1}(s, v)$, for all $v \in V$, using (e). The cost is O(m) by (a). Now construct $\delta_i(s, v)$, for all $v \in V$, using (e). Repeating this for *i* from 2 to $k \ (= \lg C)$, we construct $\delta_k(s, v) = \delta(s, v)$, for all $v \in V$, in $O(E \lg C)$ time in total.
- 3. (a) Suppose the G, k is an instance of the vertex cover problem. If we transform G to the edge coloured graph H as described, and we choose s = v'_0 and t = v'_n, then we claim that H has a path from s to t using at most k colours if and only if G has a vertex cover of size at most k. Suppose that G has a vertex cover {v'_{i_1},...v'_{i_k}}. Then every edge e_j in E_G is incident on at least one of the vertices in this set. It follows from the construction that every vertex v'_j of H has an incoming edge coloured by one of the k colours in the set c_{i_1},..., c_{i_k}. Similarly, if there is a path from s to t in H using colours in the set c_{i_1},..., c_{i_k}, then it follows from the construction that every vertex v'_j of H has an incoming edge coloured by one of the k colours in the set c_{i_1},..., c_{i_k}. Thus every edge e_j in E_G is incident on at least one of the k colours c_{i_1},..., c_{i_k}. Thus every edge e_j in E_G is incident on at least one of the k colours c_{i_1},..., c_{i_k}. Thus every edge e_j in E_G is incident on at least one of the vertices in the set {v'_{i_1},...,v'_{i_k}}, that is {v'_{i_1},...,v'_{i_k}} is a vertex cover of G.
 - (b) The reduction is a polynomial time reduction since H has $|E_G|$ vertices, $2|E_G|$ edges and $|V_G|$ colours (and the decision as to which vertices to connect with a given edge and which colour to assign to a given edge can be made in O(1) time).
 - (c) It follows from the reduction above that the decision version of the minimum colour s t path problem is **NP**-hard (since the vertex cover problem is **NP**-hard). To show **NP**-completeness it remains to argue that the decision version of the minimum colour s t path problem is in **NP**. This follows because a yes-instance of the decision version of the minimum colour s t path problem can be certified by demonstrating a path from s to t using r colours (which is trivial to verify in polynomial time in the size of H).
- 4. (a) We use the notation $\overline{\alpha}$ to denote the negation of the literal α . Suppose there is an edge from literal α_i to a literal α_{i+1} in G. Then the disjunct $\overline{\alpha_i} \vee \alpha_{i+1}$ must be a disjunct in \mathcal{E} . This means that any truth assignment that satisfies \mathcal{E} and assigns the truth value true to the literal α_i must assign true to the literal α_{i+1} . The more general result, that if there is a path from a literal α to a literal β in G, then any satisfying truth assignment of \mathcal{E} that assigns true to α must also assign true to β , follows by induction of the length of the path.
 - (b) From part (a) we conclude that if there is a path from a literal α to its negation $\overline{\alpha}$, and a path from $\overline{\alpha}$ to α , then any satisfying truth assignment of \mathcal{E} that assigns true to α must also assign assign true

to $\overline{\alpha}$ (and hence **false** to α), and any satisfying truth assignment of \mathcal{E} that assigns **true** to $\overline{\alpha}$ must also assign **true** to α . Since both assignments lead to a contradiction it follows that \mathcal{E} is not satisfiable.

(c) We argue by induction on the number of variables in our formula, noting that any formula with zero variable is trivially satisfiable. Suppose that for all literals α , if $\overline{\alpha}$ is reachable from α in G then α is not reachable from $\overline{\alpha}$ in G. We describe a greedy algorithm to construct a satisfying truth assignment. Choose a literal α_1 arbitrarily that has the property that there is no path in G from α_1 to $\overline{\alpha_1}$, and assign the value **true** to α_1 and all literals reachable from α_1 in G. Since for any path from α to β in G there is a corresponding (reversed) path from $\overline{\beta}$ to $\overline{\alpha}$, it follows that this partial truth assignment is *consistent* i.e., it does not assign **true** to any literal β as well as its negation $\overline{\beta}$ (otherwise, $\overline{\alpha_1}$ would be reachable from α_1 , by the concatenation of paths from α_1 to β and β to $\overline{\alpha_1}$).

Furthermore, this partial truth assignment satisfies all disjuncts that contain one of the literals reachable from α_1 , or their negation. (If a disjunct D contains literal β that is reachable from α_1 then it is obviously satisfied by the assignment **true** to β . On the other hand if D contains the literal $\overline{\beta}$, for some literal β that is reachable from α_1 , then the other literal in D is reachable from α_1 .) Thus, if we remove all such disjuncts we have a smaller formula, with fewer variables to which the induction hypothesis applies, so the greedy algorithm can continue and choose another literal, say α_2 whose truth value was not forced by the assignment to α_1 .