
Assignment 5: Sample Solutions

1. (a) The following procedure searches for key x in a B-S array A of size
2k+1 − 1:

Algorithm 1 MEMBER(x, A, k)

1: found← FALSE; j ← k
2: while j ≥ 0 and not(found) do
3: if A[2j ] 6=∞ then
4: binary search in A[2j , 2j+1 − 1] for key x
5: if search is successful then
6: found← TRUE
7: end if
8: end if
9: j ← j − 1

10: end while
11: return found

The idea here is to look for key x in all of the non-null blocks, in order
of decreasing size, using a binary search within each block.

(b) In the worst case for a successful MEMBER query (or in all cases for an
unsuccessful MEMBER query) all of the non-null blocks are searched
at a total cost of

∑
0≤j≤k(1 + lg 2j) =

∑
0≤j≤k(1 + j) = Θ(k2). Since

k = Θ(lg n), this is Θ((lg n)2).

For the average case we compute the total running time for all possible
successful MEMBER queries (i.e all elements of S) and divide by n.

As suggested, we assume for simplicity that the cost of performing
binary search on block i is bii. If the query corresponds to one of the
2j elements in the non-null block j, our algorithm searches all larger
blocks first. Thus the total cost can be expressed as

∑
0≤j≤k bj2

j
∑

j≤i≤k bii.

Since bi ≤ 1, this cost is bounded above by :
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∑
0≤j≤k

(k(k − j + 1))2j = k2k+1
∑

0≤j≤k

k − j + 1

2k−j+1

= k2k+1
∑

1≤s≤k+1

s

2s

< k2k+2 (since
∑
s≥1

s

2s
= 2)

Thus, the total cost is O(n lg n) and the average cost, over all possible
successful queries, is O(lg n).

(c) We can implement INSERT by successive merge operations, in order
of increasing block size, which reflects the successive “carry” steps
when incrementing a binary counter. The following procedure inserts
a new element x into an existing B-S array:

Algorithm 2 INSERT(x, A)

1: */ find index i of the first (smallest) null block
2: j ← 1; i← 0
3: while A[j] 6=∞ do
4: j ← j + j; i← i + 1
5: end while
6: */ now merge all smaller blocks, plus the new element x, into block i
7: A[j]← x
8: s← 0
9: while s < i do

10: merge A[2s : 2s+1 − 1] with A[j : j + 2s − 1] into A[j : j + 2s+1 − 1]
11: A[2s : 2s+1 − 1]←∞
12: s← s + 1
13: end while

(d) In the worst case we need to merge all of the elements into one new
block. Since merging cost is linear in the total size of the blocks being
merged, and the blocks double in size at each step, the total cost for
merging is Θ(n) in the worst case.

It is straightforward to do an accounting-type amortized analysis to
show that the amortized cost of INSERT (over a sequence of n IN-
SERT operations, starting from the empty B-S array) os O(lg n). Sim-
ply assign each element lg n tokens, each of which pays for a unit of
work in a single merge step. Since individual elements y can partic-
ipate in at at most lg n merges in total (each merge doubles the size
of the block containing y) these tokens suffice to pay for all of the
required work.
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(e) Since the most recently inserted elements occupy the smallest blocks,
it makes sense–if our objective is to reduce the search cost for the most
recently inserted elements–to modify our search to consider blocks in
order of increasing size. In this case, using our standard B-S array,
we must perform binary search on all of the non-empty blocks up to
and including the block containing the query value x.

(f) Assuming that x is the i-th most recently inserted element, the worst
case occurs when i ∈ [2j , 2j+1 − 1] and n (the total number of keys)
is of the form n = 2k + 2j − 1. In this case, blocks 0 through j − 1
are all non-empty, but x lies in block k. The total cost in this case is
Θ(k + j2) = Θ(lg n + (lg i)2).

(g) The idea here is to keep an array with two blocks of each (power of 2)
size. (Think of splitting the blocks of a standard B-S array in half.) It
is easy to maintain the invariant that at least one of the two blocks of
each size , up to the size of the largest non-empty block, is non-empty.
This can be viewed as a different kind of binary representation of n,
where n =

∑
0≤i≤t ci2

i and each ci ∈ {1, 2}.
With this modification the i-th most recently inserted element must
occupy a block of size no more than 2blg ic. Hence the cost of a MEM-
BER query for the i-th most recently inserted element is at most
O((lg i)2), independent of n. Note that the asymptotic cost of IN-
SERT does not change with this modification.

2. (a) If G is represented as an adjacency list, it is easy to check if |E| =
|V | − 1, a necessary condition for G to be a tree, in O(V ) time. If G
passes that test, then it remains to check that G is connected, which
is straightforward to do in O(V +E)(= O(V )) time, using depth-first
or breadth-first search.

(b) Consider the adversary strategy that responds a1,j = aj,1 = 1, for
j = 2, . . . , |V | and ai,j = 0, otherwise. Faced with this adversary any
algorithm must look at every entry (up to symmetry) in the adjacency
matrix. Otherwise, if the adversary changes any one un-probed entry
in the matrix, the corresponding graph changes from being a tree to
not being a tree.

3. (a) Suppose that the edge colours are labeled 1, . . . c. We can transform
the graph G by replacing each vertex v by 2c vertices, vinj , voutj , for

1 ≤ j ≤ c, and each edge (u, v) with colour j by the edge (uout
j , vinj )

with weight 0. In addition, we add edges (uin
j , uout

j ) with weight 0,

for 1 ≤ j ≤ c, and edges (uin
j , uout

k ) with weight 1, for all j 6= k,
1 ≤ j, k ≤ c. Finally, we add edges of weight 0 from a new vertex s∗

to all vertices soutj , and edges of weight 0 from all vertices tinj to a new
vertex t∗, for 1 ≤ j ≤ c.

If G has n vertices and m edges then the new graph G′ has 2cn vertices
and m + c2 edges.
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In G′ there is a path of weight w from s∗ to t∗ if and only if there is
a path in G from s to t with exactly w colour transitions. (Each edge
of weight 1 in G′ corresponds to a colour transition in G, and vice
versa.)

(b) As we will see later, the minimum colour path problem is NP-hard. No
truly efficient general algorithm is known for this problem: the only
available approaches involve essentially brute-force: try all possible
paths in G from s to t. One could imagine trying all possible values of
k and all subsets of colours of size k and asking if a path exists using
only colours in that subset. What would be the cost of this approach
as a function of n and c?
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