
Assignment 3: Sample solutions and comments

1. (a) In general the cost of a divide-and-conquer algorithm can be expressed
as the sum of three terms: the split cost (the cost of splitting the
problem into subproblems), the recursive cost (the cost of recursively
solving the subproblems) and the combine cost (the cost of combining
the solutions of the subproblems into a solution of the full problem).
With this in mind, we can write the recurrence as
T (n) = S(n)+T (bn/2c)+T (dn/2e)+M(uL, uR), where S(n) denotes
the split cost and uL (respectively, uR) denotes the number of un-
dominated points in the left (respectively, right) subproblem.

Very frequently we will drop the floors and ceilings from recurrences
like this, when it is clear that this will not change the asymptotic
behaviour of the solution. This is essentially an observation that it
suffices to solve the recurrence for input sizes of a special form (in
this case, a power of two) since the cost of the algorithm increases
monotonically with input size. Note that we would expect that M(·, ·)
also grows monotonically, so for the purpose of upper bounding the
cost it would suffice to replace uL and uR by n/2 as well. (Later
we will see that it makes sense to analyse the cost of algorithms for
problems like this in terms of both the input size and the output size.)

Note that, assuming the inputs do not come pre-sorted by x-coordinate,
we have S(n) = Θ(n), by using a deterministic linear-time median-
finding algorithm.

(b) Most people recognized that, since all of the points in the left subset SL

have smaller x-coordinates than all those in the right subset SR, (i) the
points of SR that are un-dominated in S are precisely those that are
un-dominated in SR, and (ii) the points of SL that are un-dominated
in S are precisely those that are un-dominated in SL and have y-
coordinate greater that the largest y-coordinate among all points in
SR.

This means that the list output(S) representing the un-dominated
points in S can be formed by appending the list output(SR) of un-
dominated points of SR to the list output(SL) of un-dominated points
of SL that has been truncated at last point whose y-coordinate exceeds
the y-coordinate of the first point on output(SR). This can clearly be
done in time proportional to the total length of output(SL), using
standard list operations, which is certainly O(uL + uR).

1

Expressed as a function of input size alone we have T (n) ≤ 2T (n/2)+
O(n) which has the solution T (n) = O(n lg n).

(c) A simple (but by no means unique) reduction that achieves the de-
sired result is to simply take the input 〈x1, x2, . . . , xn〉 that you wish
to sort, and respond with the same permutation that corresponds
to the sequence of un-dominated points associated with the input
〈(x1,−x1), (x2,−x2), . . . , (xn,−xn)〉.
Although this implies that the un-dominated points problem is at
least as hard as sorting, in some sense, one needs to be careful about
concluding that O(n lg n) operations are required, since pairwise com-
parisons between inputs might not be the only operation that makes
sense.

2. (a) We can imagine constructing S by a sequence of n uniform random
draws from the interval (0, 1]. For any fixed x ∈ (0, 1], we let Xi

denote the indicator random variable with value 1, if the i-th draw is
less than or equal to x, and 0 otherwise. Then the random variable
X =

∑n
i=1 Xi is just the number of keys in S that are less than or

equal to x (i.e. the S-rank of x).

Since each key is chosen independently, each Xi is just a Bernoulli
trial with success probability x, and X (the number of successes in
n trials, is binomially distributed (see, CLRS, p. 1113- for details).
Thus,

E[X] = E[
∑

Xi] =
∑

E[Xi] = nx,

(b) It follows immediately from part (a) that the expected number of
elements in S that are less than or equal to q (which is the same as
the expected rank of q in S) is nq. Thus, we expect to find the element
of S that is closest in value to query q in location bnqc or dnqe.

(c) Since the random variable X is binomially distributed, it has variance
np(1−p) ≤ n/4. It follows, by Chebyshev’s inequality that, for any s >
0, Pr{|lq−eq| ≥ s

√
n} ≤ 1/(4s2). (This was given in the assignment.)

If we let hj = Pr{d|lq − eq|/
√
ne = j} then it follows that∑

j>i

hj ≤ 1/(4i2).

2

Thus,

E[|lq − eq|/
√
n] ≤ E[d|lq − eq|/

√
ne]

=
∑
j≥1

jhj

=
∑
i≥1

∑
j≥i

hj

=
∑
i≥1

[hi +
∑
j>i

hj]

≤ 1 +
∑
i≥1

1/(4i2) < 1 + 1/2.

(d) The pseudocode finds an interval of size
√
n containing D[lq] by check-

ing successive intervals of size
√
n, starting with an interval incident

to D[eq], until the desired interval is found. It is clear that the total
amount of work done is proportional to the number of iterations of the
while loop which is just d|lq− eq|/

√
ne. By part (c), this has expected

value less than 2.

(e) Since T (n), the expected cost of finding the element closest to an
arbitrary query q in an array of size n, grows monotonically with n,
it follows that

T (n) ≤ T (22
dlg lg ne

).

But, for some constant c, we have T (22
1

) = T (4) ≤ c and T (22
k

) ≤
c + T (22

k−1

), for k > 1. Thus, it follows, by induction on k, that

T (22
k

) ≤ ck, and hence T (n) = O(1 + lg lg n).

3. (a) The while loop repeats at most n times: each iteration decreases j− i
by 1, and the loop terminates when j−i (which is n-1 to start) becomes
negative. Since the loop body involves Θ(1) work, the total cost is
Θ(n).

(b) If the procedure returns TRUE it must be because both A[i]+A[j] ≤ 0
and A[i] + A[j] ≥ 0; thus it is correct in this case. Suppose that
A[i0] +A[j0] = 0, where i0 ≤ j0. We need to show that the procedure
must return TRUE. Otherwise, since we have i ≤ i0 and j ≥ j0 to
start and i > j to finish, at some point in the computation we must
have i = i0 and j > j0, or i < i0 and j = j0. In the first case,
A[i] + A[j] > 0, and so j will be decremented until j = j0. In the
second case, i will be incremented until i = i0.

It is also possible to probe correctness, slightly more formally, by
arguing that the following condition is an invariant of the while loop:

for all p, q, where 1 ≤ p < i and j < q ≤ n

A[p] + A[j] < 0 and A[i] + A[q] > 0 and A[p] + A[q] 6= 0

3

This holds trivially at the start (when i = 1 and j = n) and is easily
seen to be be preserved by each loop iteration. If the loop is exited
when i = j + 1 then the invariant is sufficient to establish that A[p] +
A[q] 6= 0, for 1 ≤ p ≤ j and j ≤ q ≤ n.

(c) (i) replace “0” by “t”. Nothing in the procedure depends on the target
being 0.
(ii) replace “i ≤ j” by “i < j”. This eliminates the case where i = j.

(d) Assume A is sorted.
repeat, for each element A[k] in A,

use the generalized procedure from (c) to test if some pair
of elements in A add up to the target value −A[k].

if so return TRUE
return FALSE

The cost is O(n2), since it involves n repetitions of the linear-time
procedure in (c).

4

