
Assignment 2: Sample solutions and comments

1. Consider the following algorithm:

Algorithm 1 UnaryMax(S)

1: randomly reorder the elements x1, x2, . . . , xn of S
2: determine the value of x1 (by binary search) and assign this value to MAX
3: for i = 2, . . . , n do
4: if xi > MAX then
5: determine the value of xi, and assign this value to MAX
6: end if
7: end for
8: return MAX.

Each time MAX is updated the binary search has a cost of O(lgm). But,
by the analysis of the hiring problem (done in class) the expected number
of times that MAX is updated is O(lg n). Thus, the expected total cost
of the algorithm above is O(n+ lg n · lgm).

2. (a) After thinking about this for a bit it is natural to consider a strategy
of the form:

Algorithm 2 α-sampling-strategy

1: for the first αn of the numbers do
2: respond “no”, but
3: keep track of the largest number MAX seen so far
4: end for
5: for the remaining numbers in sequence do
6: if xi > MAX then
7: respond “yes” and stop
8: end if
9: end for

It turns out that this strategy is successful in choosing the maximum
with probability very close to α ln 1

α . (This analysis is described in
detail in section 5.4.4 of the Cormen et al text.) This probability is
maximized (as 1/e ≈ 0.3678) when α is chosen to be 1/e.

(b) The analysis is particularly simple when we choose α = 0.5. In this
case, the strategy is certain to succeed if the second smallest number

1

appears in the first half of the inputs and the largest number appears
in the second half of the inputs. Since each of these events occurs with
probability 1/2, for a randomly chosen input sequence, the probability
of them both occurring is at least 1/4. [Note the events are not exactly
independent, but the probability that one occurs, given that the other
occurs, is slightly larger than the unconditional probability.]

3. In addition to the arrays A and B, we use one additional variable n that
denotes the current size of the dynamic set S. Initially, n = 0, and the
invariant holds trivially. Here is pseudocode for the desired operations:

Algorithm 3 member(i)

1: j ← A[i]
2: if j < 0 or j > n− 1 then
3: return false

4: else
5: return B[j] = i
6: end if

Algorithm 4 insert(i)

1: if not(member(i)) then
2: increment n
3: B[n− 1]← i
4: A[i]← n− 1
5: end if

Algorithm 5 delete(i)

1: if member(i) then
2: A[B[n− 1]]← A[i]
3: B[A[i]]← B[n− 1]
4: decrement n
5: else
6: return error

7: end if

The correctness of member is immediate from the invariant. (Note that it
is essential to check that 0 ≤ j ≤ n−1 holds.) For the correctness of insert
and delete it suffices to confirm that they preserve the invariant. This is
particularly straightforward for insert; for delete it is only slightly more
involved (the special case where i = B[n − 1] is interesting and should
not be overlooked). Note that if we did not care about preserving the
invariant n = |S| (i.e. reclaiming the space in B) then we could delete
element i by simply setting A[i] to −1.

2

4. (a) Following the hint, we start by designing an algorithm whose search
cost, when the algorithm returns index i, is proportional to lg(1 + i).
(This essentially treats the special case when `(j− 1) = 1.) With this
in mind, we observe that if the positions of D are partitioned into
Θ(lg n) blocks, where the k-th block consists of indices i ∈ (2k−1, 2k],
then the search cost when the algorithm returns an index in the kth
block should be proportional to k. A reasonable hybrid strategy that
achieves this goal is to (i) use linear (sequential) search to find the
block that contains the query, then (ii) use binary search within the
block to locate the correct answer.

This search strategy, summarized in pseudo-code below, achieves
costS(i) ≤ 2k, for i ∈ (2k−1, 2k] (k steps to locate the correct block and
k more to do the binary search). In other words, costS(i) = Θ(1+lg i).

Algorithm 6 Search(D[1 : n], x)

1: if x > D[n] then
2: return n
3: end if
4: if x ≤ D[1] then
5: return 1
6: end if
7: i← 2
8: while x > D[i] do
9: i← min(i ∗ 2, n)

10: end while
11: return BinarySearch for x in D[i/2 : i].

Now to treat the more general case (where `(j−1) is not necessarily 1)
we (conceptually) form blocks, of increasing powers of two in size, to
both the left (lower indices) and right (higher indices) of D[`(j − 1)].
One comparison (with D[`(j−1)]) determines which of these two sub-
arrays contains the desired answer. Thereafter we proceed as in the
pseudo-code above (with increasing or decreasing indices, as appro-
priate). If the result `(j) satisfies |`(j)− `(j− 1)| ∈ (2k−1, 2k], then it
is discovered in at most 2k = Θ(lg(2 + ∆j)) additional comparisons.

(b) It is easy to see, by induction on d, that any binary tree has at most
2d nodes at depth d; thus it certainly has at most 2d leaves at this
depth.

It follows from this that a binary tree has no more than
∑
d≤k 2d =

2k+1 − 1 leaves at depth less than or equal to k. (Of course, we
can give a tighter bound than this, but this is all we need for this
question.) Thus, any algorithm that correctly answers queries leading
to locations in the range [`(j − 1)− 2k, `(j − 1) + 2k] must use more
than k comparisons for at least some of these queries. What this says
is that there is a limit to how much one can exploit locality of reference

3

in the worst case: for at least some queries with distance ∆ ∈ [0, 2k]
from their predecessor we need at least k ≥ log(2 + ∆) comparisons.

4

