
Assignment 1: Sample solutions and comments

1. Hopefully everyone understood this question, so no further explanation is
needed.

2. (a) Despite the hint, many people seemed somewhat confused about how
to structure the induction argument. The basis of the induction is the
case where f(A,B,C) = 0. Since both |B| and |C remain greater
than zero after the first comparison, we can reach a state where
f(A,B,C) = 0, only when |A| = n = 1, or |A| = 0 and |B| = |C| = 1.
In either case, there remains just one candidate for each of max and
min, so no more comparisons are needed (which establishes the basis
of the induction).

For the induction step, which most people handled correctly, we ob-
serve that for all possibilities of the next comparison (I will not go
through all of them here), following the rules of the adversary en-
sures that f(A′, B′, C ′), the value of f on the updated sets, is reduced
by at most 1. (For example, if the next comparison is of type A:A,
then |A′| = |A| − 2, |B′| = |B| + 1 and |C ′| = |C| + 1, yielding
f(A′, B′, C ′) = f(A,B,C)− 1.)

If we describe a comparison as productive if it leads to a reduction in
the value of f , then our induction hypothesis can be strengthened to
assert that “In any state (A,B,C,D) at least f(A,B,C) more pro-
ductive comparisons are required to reach a state in which both the
maximum and minimum element are known”. If we proceed by in-
duction on f(A,B,C), we note that, after one productive comparison,
we reach a state (A′, B′, C ′, D′), where f(A′, B′, C ′) = f(A,B,C)−1,
and so, by our inductive hypothesis at f(A,B,C)−1 more productive
comparisons remain to be done.

(b) The lower bound follows by observing that at the start of the algorithm
|A| = n and |B| = |C| = 0.

3. (a) For this problem, you want to choose pc to be the midpoint of the
interval [minS , maxS], where minS (resp., maxS) corresponds to the
minimum (resp., maximum) element in S. You need to argue that
any other choice will be sub-optimal (could be improved); note that
any other choice for pc will be further from either minS or maxS .

It is not completely clear that both minS and maxS need to be de-
termined by any algorithm that finds their midpoint (which would

1

establish a lower bound of d3|S|/2e−2 comparisons in the worst case,
by question 2). Nevertheless, it is clear that Ω(n) comparisons are
needed, since we cannot determine the centre of a set without at least
looking at all of its elements.

(b) For this problem, you want to choose pc in such a way that the number
of elements of S that are less than or equal to pc matches the number
of elements of S that are greater than or equal to pc. (Otherwise,
the expression

∑
q∈S |q − pc| can be reduced by either increasing or

decreasing pc.)

Thus, this problem reduces to finding the median, when |S| is odd,
(or a median, when |S is even) element in S. You should recall (from
CPSC 320) that this can be done in O(n) time; that is, it is not
necessary to sort the elements. The fact that Ω(n) comparisons are
needed follows from the observation that we cannot determine the
median of a set without at least looking at all of its elements.

(c) For this problem, you want to choose pc to be either 0 or 1 or the
midpoint of the largest gap between successive elements of S. (Again,
you should be able to argue that no other point could realize the
maximum value of minq∈S |q − pc|.)
To choose the best among these possibilities it suffices to know the min
and max values in S and the sizes of all the gaps between successive
elements. Clearly, this can be determined by sorting the elements of
S, but it is interesting to know that this is not necessary: the largest
gap (like the min and max) can be found in linear time. We will talk
more about how to do this later. Meanwhile, as in part (b) is should
be clear that O(n) time is the best one could hope for.

(d) For this problem, you want to choose pc to be the midpoint of the
smallest gap between successive elements of S. (Again, you should be
able to argue that no other point could be the centre of a minimum
length interval that covers two or more points of S.)

To choose the best value for pc, it suffices to know the sizes of all the
gaps between successive elements. Clearly, this can all be determined
by sorting the elements of S, but as in part (c), it is interesting to
know whether or not sorting is necessary. It turns out that the an-
swer depends on the model of computation (allowable operations) in
a subtle way. Again, we will talk more about this later.

2

