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1. (5+5+8+8 marks)

Let G = (V, E) be a graph, where every edge e € E has an associated, possibly negative, cost ¢(e). Let A > 0
be any constant and let G* be the same as G, except each edge e € E has been given the modified cost c(e) + A.

(a) Prove or disprove: for every pair u,v € V, if P is a minimum-cost path from u to v in the graph G2, then
P is also a minimum-cost path in G.

This is easily disproved by exhibiting a counterexample to the assertion. In the example below, the shortest
path from a to c in G is the path a — b — c. However the shortest path fro a to cin G* is a — c.

We introduced another general scheme for reweighting the edges of a graph G = (V, E):

if z : V' — R is any real-valued function defined on the vertices of G, then the new cost é((u, v)) of edge (u,v)
is defined as:

&((u, v)) = e((u,v)) = 2(u) + 2(v)

for all (u,v) € E, where c(u, v) is the old cost.

(b) What property of path costs is unchanged by this reweighting? Explain briefly why this is true.

The relative cost (cost difference) of any two paths with the same start and end points is unchanged by the

reweighting. This is true because, for any path P = v1,va,...,0n:
E(P) =" é((vie1,v:))
i>1
= le((vie1,v:)) = 2(vi-1) + 2(v3)]
v>1
=D el(vim1,0))] = 2(v1) + 2(vn)
v>1

= c(P) = z(v1) + 2(vn)
So if paths P and P’ both have start point v, and end point v,, then

&Py —é(P) = ¢(P') — e(P).



(c) Johnson’s algorithm for computing minimum-cost paths, for all vertex pairs, makes use of the reweighting
scheme in part (b) to ensure that the reweighted edges all have non-negative cost. Explain how Johnson’s
algorithm determined the values for the “lifting” function z.

Johnson’s algorithm:

(i) adds a new vertex v* and edges (v, v*), with cost 0, for allv € V, to form a new graph G*;

(ii) computes §(v,v*), the minimum cost path from v to v*, for all vertices v, using Bellman-Ford (viewed
as a single-destination algorithm); then

(iii) assigns z(v) to be §(v,v™*).

(d) Edge reweighing is also used to make Dijkstra’s algorithm, interpreted as a single-source-single destination
minimum-cost path algorithm, goal directed. Explain briefly what it means to be goal-directed, and how

edge reweighing helps to achieve this.

“Goal directed” means that the (approximate) distance (cost) remaining to the destination is taken into
account to help bias the search for the minimum cost path.

By reweighing edges, choosing z(v) to be an estimate (consistent underestimate) of the distance remaining
to the destination, Dijkstra’s algorithm now chooses vertices in order in increasing values of: (distance
from the source) + (estimated distance to the destination). This corresponds to what is commonly known
as the A* heuristic.



2. (7+5+7 marks)

We studied examples of adaptive (or self-organizing) search structure, based on lists and trees.

(a)

(b)

©

Describe a situation in which splay trees, which know nothing of key access frequencies, would outperform
a static binary search tree optimized to exploit known access frequencies..

Such a situation occurs when accesses, despite the fact that they adhere to some overall frequency, are
nevertheless clustered in time. For example, if all accesses have the same total frequency but those of one
key appear predominantly at the start, those of another predominantly at the end, etc.

The Access Theorem for splay trees asserts that the amortized cost of accessing a node z in a splay tree
with root node 7 is proportional to the difference of the rank of r and the rank of x, where the rank of any
node z is (essentially) the logarithm of the total weight of the nodes in the subtree rooted at z.

How does the splay-to-root operation, that restructures the tree when a node x is accessed, depend on the
weights of the nodes on the access path to x?

The operation itself does not depend on the weights at all. The weights are only used in the cost analysis.

We discussed several corollaries of the Access Theorem that described different properties of splay trees
based on different choices for the weights assigned to individual nodes. One of attributes of splay trees
that remains only a conjecture is the so-call Dynamic Optimality Conjecture. Dynamic optimality has
been established for list-structured dictionaries, using the move-to-front restructuring operation. Briefly
describe what it means for the move-to-front restructuring operation to be dynamically optimal.

Dynamic optimality refers to the ability to compete, in amortized cost, to within a constant factor with any
dynamic scheme dealing with the same sequence of operations (accesses), even one that knows the access
sequence in advance. Thus the dynamic optimality of move-to-front means that the amortized cost of any
sufficiently long sequence of accesses under move-to front is no worse than a constant factor more than
the cost of any other restructuring algorithm, on the same sequence, even one that knows (or guesses) the
access sequence in advance.



3. (10+10 marks)

In Assignment 5, you were invited to consider two different problems associated with a given a directed graph
G = (V, E) each of whose edges is coloured by one of x distinct colours.

The first problem, the minimum colour-transition path problem asks for a path from a specified vertex s to
another specified vertex ¢ that minimizes the number of colour changes (that is the number of transitions between
different coloured sub-networks). This problem was solved by reduction to the standard minimum-cost path
problem in a graph whose edges have associated weights in {0, 1, co}.

(a) Let G be any n-vertex m-edge graph G whose edges have associated weights in {0, 1, ...k}, for some
fixed integer k. We want to show that, in this situation, Dijkstra’s algorithm can be implemented in such
a way that it computes (s, v) for all v € V in O(n 4+ m) time in total. The idea is to exploit the fact
that every simple path in G has has an integer-valued weight between 0 and kn. Thus we can maintain the
priority queue, in Dijkstra’s algorithm, consisting of the ds-values associated with elements of V' — S, as a
list structure L[0 : kn+ 1], where L[i] points to a doubly-connected list containing all verticesv € V — .S
with dg[v] = i, and L[kn + 1] points to a doubly-connected list of vertices v € V' — S with dg[v] > kn.
Using the fact that the dg-values extracted from the priority queue increase monotonically over time, show
that the EXTRACT-MIN operation on this priority queue can be implemented to run in amortized O(1)
time.

The key idea here is that the structure described for maintaining the priority queue (ds-values) can simply keep
track of the list that contained the most recently extracted element (initially L[0]). When the list becomes empty,
EXTRACT-MIN simply advances to the next non-empty list. (This may entail looking at a number of lists but
the total amortized cost is O(1) since once a list becomes empty nothing will ever be added to it, since the dg
values that are extracted increase monotonically.) If a list is non-empty we can simply extract its first element,
which takes O(1) time.



(Quesion 3, con.) The second problem, the minimum colour path problem asks for an s, t-path that uses the smallest
total number of distinct edge colours.

The (apparently unrelated) vertex cover problem takes as input an undirected graph G = (Vg, E) and an
integer k and asks if there exists a subset V' of V¢ of size k such that every edge (u,v) € Eg is covered by V',
that is either u € V’/ or v € V' (or both).

Suppose that Vg = {v1,v2,...,v,} and Eg = {ej,ea,...,e,}. Consider the edge-coloured directed graph
H = (Vg, Egn), where Vg = {ug, u1, ... uy } and Ey contains an edge from u;_; to u;, with colour ¢; exactly
when vertex v; is an endpoint of edge e; in G.

(b) Prove that if the graph H = (Viz, Ey) has a path from ug to u,, that uses k colours then the graph G has
a vertex cover of size k. (Hint: draw a picture of the graph H.)

Note that ALL paths in H go through progressively higher numbered vertices. Suppose that H has a path
P = ug,uy, ... uny that uses edges with k different colours in total. Let c;, be the colour of the edge in P
from w;_q to u;. Then by construction the set of vertices {vj,,...,vj, } (i) has size k and (ii) covers all
edges (edge e; is covered with vertex v, ).



4. (10+10 marks)

Recall that in homework Assignment 5 , we studied a data structure, called a block-sorted array (or B-S array
for short), that was designed to combine some of the advantages of ordered arrays (for fast MEMBER queries,
using binary search) and unordered arrays (for fast dynamic operations, like INSERT and DELETE).

Specifically, suppose that at any moment in time set .S contains n elements. Let n = Z?:o b;27, where
k= |lgn] (.e. (bg...b1by) is the binary representation of n.) A B-S array representation of S is an array A of
size 281 — 1, divided into k + 1 blocks, where the i-th block, 0 < i < k, is the subarray A[2? : 2+ — 1]. The
invariant maintained by the B-S array representation is that (i) blocks whose index ¢ corresponds to a 0-bit in
the binary representation of n contain a special sentinel co only; (ii) all other blocks contain keys of S, without
duplication; and (iii) the elements in each block are sorted in increasing order. Note that no assumption is made
about the relationship between elements in different blocks.

(a) We described an implementation of INSERT that behaves a lot like incrementing a binary counter. In the
worst case this INSERT operation into a B-S array with n elements could require ©(n) time. However the
amortized cost of INSERT (over a sequence of n INSERT operations into a B-S array of size at most n) is
O(lgn). Explain the amortized analysis that gives this bound.

In the worst case we need to merge all of the elements into one new block. Since merging cost is linear
in the total size of the blocks being merged, and the blocks double in size at each step, the total cost for
merging is ©(n) in the worst case.

It is straightforward to do an accounting-type amortized analysis to show that the amortized cost of IN-
SERT (over a sequence of n INSERT operations, starting from the empty B-S array) is O(lgn). Simply
assign each element 1gn tokens, each of which pays for a unit of work in a single merge step. Note that
a merge involving 2° elements has a cost proportional to 2, so one token for each of the participants will
pay for the full merge cost.) Since individual elements y can participate in at at most lg n merges in total
(each merge doubles the size of the block containing y) these 1gn tokens per element inserted suffice to
pay for all of the required work.

(b) The operation INSERT can be viewed as a very special case of the UNION operation on B-S arrays (where
one of the arrays has just one element). Describe how to implement a linear-time general UNION operation
that takes two B-S arrays A[1 : 27! — 1] and B[1 : 28! — 1] and forms a new B-S array C representing
the union of the elements represented in A and B. Explain your analysis.

The idea here is to observe that just as INSERT is similar to the INCREMENT operation on a binary
counter, UNION is similar to binary ADDITION... As with binary addition, we work from low-order bits
to high order bits. In general, when looking at the i-th position (bit or block, of size 2°), we have a bit
reflecting the status (empty or full) of the i-th block of A, a bit reflecting the status of the i-th block of B,
and a carry bit, reflecting the status of a carry block (from the preceding step). As in binary addition we
need to treat the various cases when 0, 1, 2 or 3 of these bits have value 1:

case 0: the i-th block of C' is set to empty (sentinel value);

case 1: the sole non-empty block is copied into the i-th block of C;

case 2: the two non-empty blocks are merged (in linear time) into a carry block of size 211, and the i-th
block of C' is set to empty (sentinel value);

case 3: the current carry block is copied into the i-th block of C, and the i-th blocks of A and B are
merged into a new carry block of size 2111

Since only a constant number of blocks (of size 2*) are copied or merged in the i-th step, the total cost is

O o<i<k 2%) which is O(n).



5. (10+10 marks)

We have seen several examples of arguments that establish lower bounds on the cost of solving certain compu-
tational problems.

()

(b)

Give a brief explanation of information theoretic and adversary arguments, sufficient to highlight their
similarities and differences. Illustrate your answer with examples of these arguments that we have dis-
cussed.

information theoretic arguments exploit the fact that any process that distinguishes among n possibilities
using two outcome questions, must use )(1gn) questions on average. This is often formulated as a binary
decision tree argument in which case it states that any tree (describing different computation paths) with
n leaves (realizable outcomes) must have at least one path of length lgn. This argument was used, for
example, to show that sorting requires Q)(nlgn) comparisons, or that locality of search cannot hope to do
better than 1g k, on average, for keys located no further than k from the preceding query.

Adversary arguments on the other hand are more adaptive. The take the form of an anti-algorithm designed
to respond to comparisons in such a way that the algorithm is forced into something resembling the worst
case. A simple example is an anti-search adversary that forces any probing scheme, including binary
search, to take at least lgn probes before locating the query value. In its simplest form an adversary
simply chooses an input that is bad for any algorithm. We saw a more adaptive adversary in the first
assignment where we proved a lower bound on finding the maximum and minimum elements in a set.

Consider the set {0, 1} of all binary strings of length n. A property defined on {0, 1}™ (think of something
like “palendrome” or “binary representation of a prime number”) is said to be odd if an odd number of
strings in {0, 1}™ satisfy the property. Argue, by describing a general adversary strategy that, for every
odd property P, every algorithm that checks strings in {0, 1}" for the property P can be forced to look at
every bit in the string, in the worst case.

Suppose P is an odd property. If algorithm A asks about the i-th bit in the input string then the adversary
checks the parity of the set of strings with the i-th bit set to 0 that satisfy P. If this set has odd parity
then the adversary responds 0, otherwise it responds 1. In either case the set of strings consistent with
the response that satisfy P remains odd. In this way, the adversary can continue to answer queries about
individual bits, and as long as one or more bits remain un-probed the algorithm cannot be certain if the
string being formed by the adversary does or does not satisfy the property P.



