
The University of British Columbia

Department of Computer Science

Computer Science 420—Advanced Algorithm Design and Analysis

Homework Assignment 6/7

Due: 2015 March 19

Please review the class policy on collaboration before starting this assignment. You are free to discuss problems

in groups of size at most three. However, your actual homework submission must be prepared on your own.

At the top of the first page of every homework submission you must clearly acknowledge all sources (including

books, websites and discussions with fellow students) that you have used in the preparation of your submission.

1) Let G = (V,E) be an undirected graph, and let n = |V | and m = |E|.

We denote by G[t] the graph (V,E[t]), where (vi, vj) ∈ E[t] if and only if there exists a path consisting of

exactly t edges from vi to vj in G. Similarly, we denote by G〈t〉 the graph (V,E〈t〉), where (vi, vj) ∈ E〈t〉

if and only if there exists a path consisting of at most t edges from vi to vj in G. Finally, we denote by

G∗ the graph (V,E∗), where (vi, vj) ∈ E∗ if and only if there exists a path consisting of some (arbitrary)

number of edges from vi to vj in G.

Let A, A[t], A〈t〉 and A∗ denote the adjacency matrix representations of G, G[t], G〈t〉 and G∗, respectively.

a) Show that a
[2]
i,j , the i, j-th entry of A[2], is given by a

[2]
i,j =

∨
k(ai,k ∧ ak,j). (Thus A[2] = (A[1])2, the

Boolean matrix product of A[1] with itself.) Similarly, show that A〈2〉 = (A〈1〉))2.

b) Prove that A[t] = (A[1])t and A〈t〉 = (A〈1〉)t, for all t ≥ 1.

c) Show that A∗ = A〈t〉, for all t ≥ n− 1.

2) [ From Cormen et al., Problem 24-4 (page 615): Gabow’s scaling algorithm for single-source minimum-cost

paths ]

A scaling algorithm solves a problem by initially considering only the highest-order bit of each relevant

input value (such as an edge weight). It then refines the initial solution by looking at the two highest-order

bits. It progressively looks at more and more higher order bits, refining the solution each time, until all

bits have been considered and the correct solution has been computed.

In this problem, we examine an algorithm for computing δ(s, v), the cost of the minimum-cost path from

a single source s to vertex v, for all vertices v ∈ V , by scaling edge costs. We are given as input an

n-node, m-edge directed graph G = (V,E) with non-negative integer edge cost function c. Let C =

max(u,v)∈E{c(u, v)}. Our goal is to develop an algorithm that runs in O(mlg(C + 1)) time. We assume

that all vertices are reachable from the source vertex s, so in particular m ≥ n− 1.

The algorithm uncovers the bits in the binary representation of the edge costs one at a time, from the

most significant bit to the least significant bit. Specifically, let k = dlg(C + 1)e be the number of bits in

the binary representation of C, and for i = 1, 2, . . . , k, let ci(u, v) = bc(u, v)/2k−ic. That is, ci(u, v) is the

“scaled-down” version of c(u, v) given by the i most significant bits of c(u, v). (Thus ck(u, v) = c(u, v), for

all (u, v) ∈ E.) For example, if k = 5 and c(u, v) = 25, which has the binary representation 〈11001〉, then

c3(u, v) = 〈110〉 = 6. As another example, with k = 5, if c(u, v) = 〈00100〉 = 4, then c3(u, v) = 〈001〉 = 1.

Page 1



Let us define δi(u, v) to be the cost of the minimum-cost path from vertex u to vertex v when we use cost

function ci. Thus δk(u, v) = δ(u, v), for all u, v ∈ V . The scaling algorithm first computes the minimum-

cost values δ1(s, v) for all v ∈ V , then computes δ2(s, v) for all v ∈ V , and so on, until it computes δk(s, v)

for all v ∈ V . We shall see that computing δi values from δi−1 values takes O(m) time in total, from

which we conclude that the entire algorithm takes O(km) = O(mlg C) time.

a) Suppose that for all vertices v ∈ V , we have δ(s, v) ≤ m. Show that we can compute δ(s, v) for all

v ∈ V in O(m) time in total. (Hint: Use Dijkstra’s algorithm, maintaining the priority queue of the

d-values associated with elements of V − S as a list structure L[0 : m + 1], where L[i] points to a

doubly-connected list containing all vertices v ∈ V − S with d[v] = i, and L[m+ 1] points to a doubly-

connected list of vertices v ∈ V − S with d[v] > m. Exploit the facts that(i) d-values only decrease

over time, and (ii) the d-values extracted from the priority queue increase monotonically over time.)

b) Show that we can compute δ1(s, v) for all v ∈ V in O(m) time in total.

We now focus on computing δi values from δi−1 values.

c) Prove that for i = 2, 3, . . . , k, we have either ci(u, v) = 2ci−1(u, v) or ci(u, v) = 2ci−1(u, v) + 1. Then,

prove that

2δi−1(s, v) ≤ δi(s, v) ≤ 2δi−1(s, v) + |V | − 1

for all v ∈ V .

d) For i = 2, 3, . . . , k and for all (u, v) ∈ E, define ĉi(u, v) as:

ĉi(u, v) = ci(u, v) + 2δi−1(s, u)− 2δi−1(s, v).

Prove that for i = 2, 3, . . . , k and for all (u, v) ∈ E, the “reweighted” value ĉi(u, v) of edge (u, v) is a

non-negative integer.

e) Now define δ̂i(s, v) as the weight of the shortest path from s to v using the weight function ĉi. Prove

that for i = 2, 3, . . . , k and for all v ∈ V ,

δi(s, v) = δ̂i(s, v) + 2δi−1(s, v)

and that δ̂i(s, v) ≤ |E|.

f) Show how to compute δi(s, v) from δi−1(s, v) for all v ∈ V in O(m) time, and conclude that δ(s, v) can

be computed for all v ∈ V in O(mlg(C + 1)) time.

3) The vertex cover problem takes as input an undirected graph G = (VG, EG) and an integer k and asks if

there exists a subset V ′ of VG of size k such that every edge (u, v) ∈ EG is covered by V ′, that is either

u ∈ V ′ or v ∈ V ′ (or both). The vertex cover problem is known to be NP-hard.

Suppose that VG = {v1, v2, . . . , vn} and EG = {e1, e2, . . . , em}. Consider the edge-coloured graph H =

(VH , EH), where VH = {v′0, v′1, . . . v′m} and EH contains an edge from v′i−1 to v′i, with colour cj exactly

when vertex vj is an endpoint of edge ei in G.

a) The minimum colour s− t-path problem (recall Assignment 7, Question 1b) takes as input an edge-

coloured graph H with two specified vertices s and t, and an integer r, and asks if there exists a path

from s to t in H that uses at most r edge colours. Show how to use the transformation from G to H

above to provide a reduction from the vertex cover problem to the coloured s− t-path problem.

b) Argue that your reduction can be carried out in time bounded by some polynomial in the size of the

input graph G.

c) Is the coloured s− t-path problem NP-hard? Is it NP-complete? Explain your answers

Page 2



4) A Boolean expression over a set {x1, x2, . . . , xn} of Boolean variables is in 2-CNF (conjunctive normal

form) if it is the conjunction (logical and ) of a set of disjuncts, each of which is the disjunction (logical

or) of two literals, each of which is either a variable xi or its negation xi. For example, here an expression

in 2-CNF:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x4)

In the 2-SAT problem, you are given an expression E in 2-CNF and you want to find an assignment of

true or false to each of the variables appearing in E so that the expression is satisfied – that is, at least

one literal in each disjunct is assigned the value true. (The expression above has a satisfying assignment:

set x1, x2, x3, and x4 to true, false, false, and true, respectively.)

The purpose of this problem is to lead you to a way of solving the 2-SAT problem efficiently by reducing it

to a question about paths in an associated graph. Given an expression E with n variables and m disjuncts,

construct a directed graph G = (V,E) as follows: (i) V consists of 2n vertices, one for each variable and

its negation; (ii) E consists of 2m edges: for each disjunct (α∨ β) of E (where α and β are literals) G has

an edge from the negation of α to β, and an edge from the negation of β to α.

a) Show that if there is a path from a literal α to a literal β in G, then any satisfying truth assignment

of E that assigns true to α must also assign true to β.

b) Show that if there is a path from a literal α to its negation, and a path from the negation of α to α,

then E is not satisfiable.

c) If there is no pair of paths of the form described in part (b) then E is satisfiable. Prove that this is

so by describing an efficient procedure to construct a satisfying truth assignment, in this case. (Hint:

form the transitive closure of G.)

Page 3


