
The University of British Columbia

Department of Computer Science

Computer Science 420—Advanced Algorithm Design and Analysis

Homework Assignment 2

Max-finding and dictionaries

Due: 2015 January 22

Please review the class policy on collaboration before starting this assignment. You are free to discuss problems

in groups of size at most three. However, your actual homework submission must be prepared on your own.

At the top of the first page of every homework submission you must provide a statement about external

resources used in the preparation of your submission. This must clearly acknowledge all resources (including

books, websites and discussions with fellow students) that you have used. Submissions missing this statement

will not be graded.

1) In class, it was noted (but not proved) that if we are given a set S = {x1, . . . , xn} drawn from an input

space U = {0, 1, . . . ,m− 1}, then we can determine the maximum element in S using O(n + lg m) unary

predicate evaluations (specifically, tests of the form “is xi ≥ j?”). (This was contrasted with the brute-

force O(n lg m)-time algorithm that starts by determining the exact value of each of the inputs using

binary search.)

Describe a randomized algorithm, that runs in expected time O(n + lg n · lg m), and determines the

maximum element in S, using only unary predicates (of the form described above). [Hint: recall the

solution to the incremental hiring problem, described in class.]

2) [A maximum-guessing game] Suppose that the n numbers in some (unknown) set S of distinct numbers

are presented to you in random order (i.e each ordering is equally likely). After you see each number, you

are asked “Is this the maximum element in S?” If you say “no” then you continue to the next number. If

you say “yes” then you win if the number truly is the maximum number in S, otherwise you lose. (Note:

that you have only one opportunity to say “yes”.)

a) Describe a strategy to follow that will result in a probability of winning that is at least 1/4.

b) Give an analysis of the probability of winning, by following your strategy (i.e. prove that the strategy

that you propose in part (a) has the desired property).

3) [See also the text (CLRS), Exercise 11.1-4] In class we sketched a scheme for doing lazy initialization of

direct access tables for representing (dynamic) sets S drawn from the universe U= {0, 1, . . . ,m− 1}. We

used two arrays A[0 : m − 1] and B[0 : |S| − 1] and maintain the invariant : i ∈ S if and only if, there

exists j, 0 ≤ j ≤ |S|−1, such that (A[i] = j and B[j] = i). Assuming that initially the set S is empty and

the array A has arbitrary values, give pseudocode for each of the operations member , insert and delete

that demonstate that they can all be executed in O(1) time.

4) Suppose that we are given D[1 : n], an array of real-valued keys sorted in increasing order, and we wish

to use D as a dictionary , i.e. for each xj in a sequence x1, x2, . . . , xq of queries we want to return the

location `(j) ∈ {1, . . . , n} of an element in D[1 : n] that minimizes |D[`(j)] − xj | (in which case we say

that key D[`(j)] has been accessed .)

It is not uncommon in certain applications that queries to a dictionary exhibit a kind of locality of reference:

successive queries are frequently made to the same, or close to the same, key. In such situations, it is

desirable to exploit this property to reduce the cost of successive searches. For 1 < j ≤ q, denote by ∆j

the value |`(j)− `(j − 1)|.

Page 1

a) Design an algorithm for searching array D[1 : n] that exploits locality of reference. Specifically, show

that query xj in the sequence x1, x2, . . . , xq can be answered at a cost proportional to lg(2 + ∆j), for

all j > 1. [Hint: start by designing an algorithm–a kind of blend of linear and binary search– whose

cost, when the algorithm returns index i, is proportional to lg(1 + i).]

b) Let A be any comparison-based algorithm for searching D[1 : n]. Prove that for every k, 1 ≤ k < lg n,

there exists an index ik ∈ [`(j − 1) − 2k, `(j − 1) + 2k] such that A requires at least k comparisons

to search for xj , knowing `(j − 1), when it turns out that `(j) = ik. [Hint: recall the fact that every

binary tree has at most 2d nodes at depth d, for every d ≥ 0.]

Page 2

