
The University of British Columbia

Department of Computer Science

Computer Science 420—Advanced Algorithm Design and Analysis

Homework Assignment 1

Review and Warmup Questions

Due: 2015 January 15

Please review the class policy on collaboration before starting this assignment. You are free to discuss problems

in groups of size at most three. However, your actual homework submission must be prepared on your own.

At the top of the first page of every homework submission you must provide a statement about external

resources used in the preparation of your submission. This must clearly acknowledge all resources (including

books, websites and discussions with fellow students) that you have used. Submissions missing this statement

will not be graded.

1) What statement must appear (together with your name and student number) at the top of the first page

of every homework submission in this course?

2) Consider the problem of finding both the maximum and minimum of a set of n numbers. We observed

in class that this combined task can be solved more efficiently than treating the individual sub-problems

separately.

a) Describe, using pseudocode, an algorithm that, given an array X[1 : n] of numbers, outputs both the

maximum and minimum of X, using at most d3n/2e − 2 comparisons.

We want to devise an adversary strategy (what we have also called an anti-algorithm) to show that

d3n/2e − 2 comparisons are also necessary , in the worst case.

Our adversary strategy determines the outcome of comparisons whose outcome is not already determined

by the results of previous comparisons in way that tries to maximize the number of comparisons made by

the algorithm on some legitimate input. To do so it maintains the numbers (contestants) in four disjoint

groups:

Group A – contestants that have never played (and hence are still candidates for both the maximum and

the minimum).

Group B – contestants that have won one or more contests but have never lost (and hence are still

candidates for the maximum).

Group C – contestants that have lost one or more contests but have never won (and hence are still

candidates for the minimum).

Group D – contestants that have both lost and won at least once (and hence are no longer candidates for

either the maximum or the minimum).

The adversary ensures that group B contestants always win (against other types) and group C contestants

always lose (against other types). Otherwise the outcome of contests is chosen arbitrarily (as long as it is

consistent with the outcomes of previous comparisons).

b) Show that, at any stage, an algorithm playing against this adversary is forced to make at least

f(A,B,C) = d3|A|/2e + |B| + |C| − 2 more comparisons before it has determined the maximum and

the minimum. (Hint: argue by induction on f(A,B,C), considering all possible cases for the “next”

comparison.)

c) Argue that the lower bound (d3n/2e − 2) follows.

Page 1

3) In each of the following subproblems S denotes a given set of n points on the real interval [0, 1]. In all

cases you should (i) describe the most efficient algorithm that you know of that solves the problem, (ii)

give a brief analysis of the complexity of the algorithm, and (iii) say what you can about the intrinsic

cost of solving the problem (in the worst case). You should assume that S is given as an unsorted array

A[0 : n− 1].

a) Determine a point pc (not necessarily in S) that minimizes maxq∈S |q − pc|.

b) Determine a point pc (not necessarily in S) that minimizes
∑

q∈S |q − pc|.

c) Determine a point pc ∈ [0, 1] (not necessarily in S) that maximizes minq∈S |q − pc|.

d) Determine the smallest r such that there exists a point pc ∈ [0, 1] (not necessarily in S) satisfying:

|S ∩ [pc − r, pc + r]| ≥ 2.

The following question is for PRACTICE ONLY. It is NOT to be handed in.

4) Suppose that we are given two arrays A[1 : n] and B[1 : m] of real numbers, that encode a collection VA

of n vertical lines x = A[i], i = 1, . . . n, and a collection HB of m horizontal lines y = B[j], j = 1, . . . ,m.

Any path P in the plane joining two specified points s and t will cross some subset (possibly empty) of

the lines in VA ∪HB .

a) Describe an algorithm that, given points s and t, finds a path P from s to t that crosses the smallest

subset of the lines in VA ∪HB .

b) Argue that your algorithm is correct. (In particular, you must argue that no other path from s to t

exists that crosses fewer lines.

Suppose now that VA and HB are line segments (rather than full lines), specified by additional ar-

rays Y min[1 : n], Y max[1 : n], Xmin[1 : m] and Xmax[1 : m], where the i-th segment in VA joins

points (A[i], Y min[i]) and (A[i], Y max[i]), and the j-th segment in HB joins points (Xmin[j]), B[j]) and

(Xmax[j], B[j]).

c) Describe an algorithm to determine if there exists a path P from s to t that does not intersect any

segment in VA ∪HB . Argue the correctness of your algorithm.

d) Describe an algorithm that determines a path P from s to t that crosses the minimum number of

segments in VA ∪HB . What is the worst-case cost of your algorithm (as a function of n and m)?

Page 2

