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Single-source shortest (minimum weight) paths and
space-bounded computation

The topic lies at the confluence of two fundamental streams in the
modern theory of algorithms

» algorithms for minimum-weight paths in graphs
» determining the limits of space-bounded computation,
including time-space tradeoffs

Our model assumes an input graph provided in read-only memory.
Space measures the number of (bounded-capacity) reusable words
of working memory. We will write O(s(n)) space to acknowledge

the fact that words typically have capacity ©(Ig n).
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Algorithms for min-weight paths

Finding min-weight paths (in directed graphs with n vertices and
m edges)

» general edge weights O(nm) [Bellman-Ford 1950's]

» non-negative edge weights O(m + nlg n) [Dijkstra, with
Fibonacci heaps 1959; 1984]

» planar graphs (with non-negative weights) O(n) [Henzinger et
al. 1997]

» small integer weights...

All of these are naturally implemented with Q(n + m) workspace.
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Memory-constrained algorithms

In addition to the obvious practical advantages of space-efficient
algorithms for min-weight paths, the basic graph reachability
problem is a core problem in computational complexity theory.
> it is a canonical complete problem for non-deterministic
log-space
> the open question L=NL?, asks if it can be solved
deterministically in log-space
» Savitch's algorithm (1970) solves the problem in O(lg n)?)
space, but requires n®U8" time
» undirected graph reachability has a O(lg n)-space solution
[Reingold 2008]
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Min-weight paths in grid graphs — Asano&Doerr(2011)



Suppose we are given an edge-weighted grid graph...




...with two distinguished vertices s and t




We want to find an s-t path of minimum weight




Asano-Doerr algorithm

Start with a v/n x /n grid...



Asano-Doerr algorithm (following Fredrickson '87)

...and partition it into k? cells, each of size \/n/k x \/n/k.



Asano-Doerr algorithm

View an s-t path as a sequence of hops between (cell) boundaries



Asano-Doerr algorithm
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» cell interiors act as quasi-edges connecting boundary vertices

» solve a min-weight path problem on boundary vertices, each
“step” of which involves a min-weight path problem (within a
cell)



Asano-Doerr algorithm — general edge weights
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» O(\/nk) phases
» each phase involves a “relaxation” of all k? quasi-edges

» since each “relaxation” has cost [(1/n/k)?]?, total cost is

O(n2'5/k)



Asano-Doerr algorithm — non-negative edge weights
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» O(y/nk) phases

» each phase involves a “relaxation” of O(1) quasi-edges

> since each “relaxation” costs time O((v/n/k)?), total time is
reduced to O(n""/k)



Asano-Doerr algorithm
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In both cases, space cost is O(ky/n + (v/n/k)?),



Asano-Doerr algorithm
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In both cases, space cost is O(ky/n + (v/n/k)?),
which is minimized at O(n?/?), when k = n%/°.



Asano-Doerr algorithm — applied recursively

> If the same idea is applied recursively on the cells
(v/n/k x \/n/k subgrids), with the same splitting factor at m
(vm™

. - 2
levels of recursion, we get a total time cost of O( iz n°)
(for general edge weights).



Asano-Doerr algorithm — applied recursively

» The space cost is O(y/nk 4+ n/k?™), which is minimized when
1

1/2+€

k = n2@m+1) | giving space n and time no(l/‘), when

m = 0(1/e).



Asano-Doerr algorithm — optimized

> In fact, if the same idea is applied recursively on the cells with
a differentiated splitting factor (chosen to balance the space
cost) at each of the m levels of recursion, we get a space cost
of n'/?1 and time n92(1/)) when m = ©(lg(1/¢)).
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Min-weight paths in grid graphs — Refinements & Extensions



Alternative recursive algorithm
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Alternative recursive algorithm
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View the fundamental problem as one of updating path estimates
on boundary vertices (using paths that lie strictly interior to cells).



Alternative recursive algorithm
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Alternative recursive algorithm

@---=©---0---0-=-0--=0---0-2-9 O O
'

'
'

'
- o o ° o o ° 3 o °
: '

'
& o o o o o o & o o
'

'
H + '
& © o---e---0---@ O ---0---9
H ' H
' . .
& o o o o & o o o
H H q
1 . R
H . R
& o o o & o o o o ¢
H H H
b---0---6---0 6---0---0 o o---0

' H 1
© o o & o o & o 6 o
H ! @

G---o---0---5 o o & o o o
i '
6--0---9 O O O be==0-==0---=9©




Alternative recursive algorithm
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Alternative recursive algorithm
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Alternative recursive algorithm
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Alternative recursive algorithm
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Alternative recursive algorithm




Alternative recursive algorithm




What is the cost of this approach?




The good news...

Since we maintain path weights at boundary vertices along one
separating line at each level of recursion, the space cost is O(y/n).



The bad news...
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We need to make many (expensive) recursive calls at each level.
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We need to make many (expensive) recursive calls at each level.



The bad news...
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In a 2/ x 2/ grid, a simple path could cross the separating line up
to 2’ times. Hence, we need to make O(2') recursive calls to
subproblems at the next level.



The bad news...
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Thus Cost(i), the cost of finding a min-weight path in a 2/ x 2/
grid, satisfies Cost(i) < 2'Cost(i — 1),
which means Cost((lg n)/2) = n©Ugn).



If we were lucky...
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...we could guess the amount of time we should devote to
individual recursive calls, so that we do work on a subproblem just
when it will pay off...



If we were lucky...
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...we could guess the amount of time we should devote to
individual recursive calls, so that we do work on a subproblem just
when it will pay off...

...but we still would not be able to certify the solution



Since we can't count on being lucky...

...instead, we should construct an resource allocation scheme
(budgeted recursion) that will be sure to subsume all possible
optimal budget allocations.



Universal budget sequences...
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paths) for successive subproblems at the same level of recursion is
universal if it contains as a subsequence a sequence of budgets
that is guaranteed to uncover the minimum-cost path.
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Universal budget sequences...

A sequence of budgets (think bounds on the exploration length of
paths) for successive subproblems at the same level of recursion is
universal if it contains as a subsequence a sequence of budgets
that is guaranteed to uncover the minimum-cost path.

» Clearly the sequence 227,22/ ... 2% of length 2/ is universal.
» However, we can do better...
Consider instead the sequence oy; defined inductively by

1 if s=0, and
Us={<> if s an

0s—1¢(2°) 0 0s_1 otherwise,

(where < signifies concatenation of sequences) .
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Properties of this ruler sequence

> the sequence o is computable in O(2°)-time and O(1)-space;

> the sequence o contains exactly 25~ appearances of the
integer 2', for all i € [s], and nothing else;

> (universality) for any positive integer sequence (di, ..., dx)
such that Z:e[x d; < 2%, there exists a subsequence
(ciy,---,Ci) of o5 such that d; < c;; holds for all j € [x]



Proof of universality

(By induction on s)

Suppose that ZIE[X] d; < 2°. Choose the smallest m such that
>icim 9 > 3 Xjepq di- Then,

(i) by induction, both (di,...,dn-1) and (dm+1,...,dx) are
dominated by subsequences of o5_1, and

(i) dm < 25.

Hence (di,...,dy) is dominated by 05 = 051 ¢ (2°) © 05_1.



Using budgeted recursion, guided by this universal,
sequence...



Using budgeted recursion, guided by this universal,
sequence...

Theorem
For any instance of the min-weight path problem on an 2" x 2h

grid the procedure determines the min-weight path in 0(2°") time
and O(2") space.
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Proof sketch...

» correctness follows directly from universality property
> space complexity is clear

» The cost at the m-th level of recursion, with budget 2°,
Cost(m, 2°), satisfies Cost(m, 2°) < ¢ - 2" T(2h — m, s), where

r,s) = ,
142) 0jcs 2T(r—1,5—j) ifr>0.



Proof sketch...

It is straightforward to confirm that

T(rs) = 2rtt —1 if r>0ands=0,
" \2T(r,s—1)4+2T(r—1,5)—1 ifr>0and s> 0.

s

Thus, T(r,s) < 2rtstl (’

Jr
S
It follows that Cost(m,2°)

S).C . 2h22hfm+s+1 (2h_sm+s)-



Proof sketch...

It is straightforward to confirm that

T(rs) = 2rtt —1 if r>0ands=0,
" \2T(r,s—1)4+2T(r—1,5)—1 ifr>0and s> 0.

Thus, T(r,s) < 2rFst1("F).
It follows that Cost(m,2%) < ¢ - 2hp2h=—m+s+1(2h=mts),

. : 4h
In particular, Cost(0, 22", the cost of our procedure is O(2°(3}))
or O(2°M).
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Combining the two approaches...

» Of course, it makes sense to stop the recursion when the
subproblem size falls below +/n.

> In fact, it pays to stop even earlier and switch to the
Asano-Doerr method.

» The optimal switch point depends on the desired time-space
tradeoff.
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What about reporting the minimum-weight path?...

» Straightforward to maintain predecessor pointer for the target
vertex t, and repeat (at a multiplicative cost proportional to
the optimal path length);

> Alternatively, we can maintain minimum path values from s
and to t at all vertices of the top level separator. Then solve
a sequence of lower-level subproblems recursively. The (time)
cost is dominated by the top-level problem.
Recall the same idea (due to D. Hershberg) was used in the
edit-distance problem...
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An arrangement of weighted regions with source and
target...




...and an overlaid grid




A planar graph



A planar graph...with a small separator

In joint work with Asano, Nakagawa and Wanatabe [MFCS 2014],
this work is extended to arbitrary planar directed graphs.



Basic ideas for planar graphs...

» Use a space-efficient algorithm for constructing separators
[Imai et al ]

» Maintain separators explicitly and (separated) components
implicitly (using a representative point.

» Reconstruct triangulated components on-demand, using
Reingold's log-space undirected reachability algorithm



That's it.....



And they all lived happily ever after.....



And they all lived happily ever after.....

THE END
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