
Efficient algorithms with restricted
workspace: shortest paths in grid graphs,

using budgeted recursion♦

David Kirkpatrick

Department of Computer Science
University of British Columbia

PIMS Workshop on:
Algorithmic Theory of Networks

March, 27-29, 2015

♦ based on joint work with Tetsuo Asano

Efficient algorithms with restricted
workspace: shortest paths in grid graphs,

using budgeted recursion♦

David Kirkpatrick

Department of Computer Science
University of British Columbia

PIMS Workshop on:
Algorithmic Theory of Networks

March, 27-29, 2015

♦ based on joint work with Tetsuo Asano

Outline

Introduction
algorithms for shortest (min-weight) paths
memory-constrained algorithms

Min-weight paths in grid graphs – Asano&Doerr(2011)
overview of basic algorithm
applying a good idea recursively

Min-weight paths in grid graphs – Refinements & Extensions
a different recursive formulation
budgeted recursion – exploiting a universal sequence
combining the ideas

Beyond grid graphs...
min-weight paths in implicit graphs
min-weight paths in general planar graphs

Outline

Introduction
algorithms for shortest (min-weight) paths
memory-constrained algorithms

Min-weight paths in grid graphs – Asano&Doerr(2011)
overview of basic algorithm
applying a good idea recursively

Min-weight paths in grid graphs – Refinements & Extensions
a different recursive formulation
budgeted recursion – exploiting a universal sequence
combining the ideas

Beyond grid graphs...
min-weight paths in implicit graphs
min-weight paths in general planar graphs

Single-source shortest (minimum weight) paths and
space-bounded computation

The topic lies at the confluence of two fundamental streams in the
modern theory of algorithms

I algorithms for minimum-weight paths in graphs

I determining the limits of space-bounded computation,
including time-space tradeoffs

Our model assumes an input graph provided in read-only memory.
Space measures the number of (bounded-capacity) reusable words
of working memory. We will write Õ(s(n)) space to acknowledge
the fact that words typically have capacity Θ(lg n).

Single-source shortest (minimum weight) paths and
space-bounded computation

The topic lies at the confluence of two fundamental streams in the
modern theory of algorithms

I algorithms for minimum-weight paths in graphs

I determining the limits of space-bounded computation,
including time-space tradeoffs

Our model assumes an input graph provided in read-only memory.
Space measures the number of (bounded-capacity) reusable words
of working memory. We will write Õ(s(n)) space to acknowledge
the fact that words typically have capacity Θ(lg n).

Single-source shortest (minimum weight) paths and
space-bounded computation

The topic lies at the confluence of two fundamental streams in the
modern theory of algorithms

I algorithms for minimum-weight paths in graphs

I determining the limits of space-bounded computation,
including time-space tradeoffs

Our model assumes an input graph provided in read-only memory.
Space measures the number of (bounded-capacity) reusable words
of working memory. We will write Õ(s(n)) space to acknowledge
the fact that words typically have capacity Θ(lg n).

Single-source shortest (minimum weight) paths and
space-bounded computation

The topic lies at the confluence of two fundamental streams in the
modern theory of algorithms

I algorithms for minimum-weight paths in graphs

I determining the limits of space-bounded computation,
including time-space tradeoffs

Our model assumes an input graph provided in read-only memory.
Space measures the number of (bounded-capacity) reusable words
of working memory. We will write Õ(s(n)) space to acknowledge
the fact that words typically have capacity Θ(lg n).

Algorithms for min-weight paths

Finding min-weight paths (in directed graphs with n vertices and
m edges)

I general edge weights O(nm) [Bellman-Ford 1950’s]

I non-negative edge weights O(m + n lg n) [Dijkstra, with
Fibonacci heaps 1959; 1984]

I planar graphs (with non-negative weights) O(n) [Henzinger et
al. 1997]

I small integer weights...

All of these are naturally implemented with Ω(n + m) workspace.

Algorithms for min-weight paths

Finding min-weight paths (in directed graphs with n vertices and
m edges)

I general edge weights O(nm) [Bellman-Ford 1950’s]

I non-negative edge weights O(m + n lg n) [Dijkstra, with
Fibonacci heaps 1959; 1984]

I planar graphs (with non-negative weights) O(n) [Henzinger et
al. 1997]

I small integer weights...

All of these are naturally implemented with Ω(n + m) workspace.

Algorithms for min-weight paths

Finding min-weight paths (in directed graphs with n vertices and
m edges)

I general edge weights O(nm) [Bellman-Ford 1950’s]

I non-negative edge weights O(m + n lg n) [Dijkstra, with
Fibonacci heaps 1959; 1984]

I planar graphs (with non-negative weights) O(n) [Henzinger et
al. 1997]

I small integer weights...

All of these are naturally implemented with Ω(n + m) workspace.

Algorithms for min-weight paths

Finding min-weight paths (in directed graphs with n vertices and
m edges)

I general edge weights O(nm) [Bellman-Ford 1950’s]

I non-negative edge weights O(m + n lg n) [Dijkstra, with
Fibonacci heaps 1959; 1984]

I planar graphs (with non-negative weights) O(n) [Henzinger et
al. 1997]

I small integer weights...

All of these are naturally implemented with Ω(n + m) workspace.

Algorithms for min-weight paths

Finding min-weight paths (in directed graphs with n vertices and
m edges)

I general edge weights O(nm) [Bellman-Ford 1950’s]

I non-negative edge weights O(m + n lg n) [Dijkstra, with
Fibonacci heaps 1959; 1984]

I planar graphs (with non-negative weights) O(n) [Henzinger et
al. 1997]

I small integer weights...

All of these are naturally implemented with Ω(n + m) workspace.

Algorithms for min-weight paths

Finding min-weight paths (in directed graphs with n vertices and
m edges)

I general edge weights O(nm) [Bellman-Ford 1950’s]

I non-negative edge weights O(m + n lg n) [Dijkstra, with
Fibonacci heaps 1959; 1984]

I planar graphs (with non-negative weights) O(n) [Henzinger et
al. 1997]

I small integer weights...

All of these are naturally implemented with Ω(n + m) workspace.

Memory-constrained algorithms

In addition to the obvious practical advantages of space-efficient
algorithms for min-weight paths, the basic graph reachability
problem is a core problem in computational complexity theory.

I it is a canonical complete problem for non-deterministic
log-space

I the open question L=NL?, asks if it can be solved
deterministically in log-space

I Savitch’s algorithm (1970) solves the problem in O(lg n)2)
space, but requires nΘ(lg n) time

I undirected graph reachability has a O(lg n)-space solution
[Reingold 2008]

Memory-constrained algorithms

In addition to the obvious practical advantages of space-efficient
algorithms for min-weight paths, the basic graph reachability
problem is a core problem in computational complexity theory.

I it is a canonical complete problem for non-deterministic
log-space

I the open question L=NL?, asks if it can be solved
deterministically in log-space

I Savitch’s algorithm (1970) solves the problem in O(lg n)2)
space, but requires nΘ(lg n) time

I undirected graph reachability has a O(lg n)-space solution
[Reingold 2008]

Outline

Introduction
algorithms for shortest (min-weight) paths
memory-constrained algorithms

Min-weight paths in grid graphs – Asano&Doerr(2011)
overview of basic algorithm
applying a good idea recursively

Min-weight paths in grid graphs – Refinements & Extensions
a different recursive formulation
budgeted recursion – exploiting a universal sequence
combining the ideas

Beyond grid graphs...
min-weight paths in implicit graphs
min-weight paths in general planar graphs

Suppose we are given an edge-weighted grid graph...

...with two distinguished vertices s and t

s

t

We want to find an s-t path of minimum weight

s

t

s

t

Asano-Doerr algorithm

Start with a
√
n ×√n grid...

Asano-Doerr algorithm (following Fredrickson ’87)

...and partition it into k2 cells, each of size
√
n/k ×√n/k.

Asano-Doerr algorithm

s

t

√
n

√
n/k

View an s-t path as a sequence of hops between (cell) boundaries

Asano-Doerr algorithm

s

t

√
n

√
n/k

I cell interiors act as quasi-edges connecting boundary vertices

I solve a min-weight path problem on boundary vertices, each
“step” of which involves a min-weight path problem (within a
cell)

Asano-Doerr algorithm – general edge weights

s

t

√
n

√
n/k

I O(
√
nk) phases

I each phase involves a “relaxation” of all k2 quasi-edges

I since each “relaxation” has cost [(
√
n/k)2]2, total cost is

O(n2.5/k)

Asano-Doerr algorithm – non-negative edge weights

s

t

√
n

√
n/k

I O(
√
nk) phases

I each phase involves a “relaxation” of O(1) quasi-edges

I since each “relaxation” costs time Õ((
√
n/k)2), total time is

reduced to Õ(n1.5/k)

Asano-Doerr algorithm

s

t

√
n

√
n/k

In both cases, space cost is O(k
√
n + (

√
n/k)2),

which is minimized at O(n2/3), when k = n1/6.

Asano-Doerr algorithm

s

t

√
n

√
n/k

In both cases, space cost is O(k
√
n + (

√
n/k)2),

which is minimized at O(n2/3), when k = n1/6.

Asano-Doerr algorithm – applied recursively

I If the same idea is applied recursively on the cells
(
√
n/k ×√n/k subgrids), with the same splitting factor at m

levels of recursion, we get a total time cost of O((
√
n)m

km(m+1)/2 n
2)

(for general edge weights).

Asano-Doerr algorithm – applied recursively

I The space cost is O(
√
nk + n/k2m), which is minimized when

k = n
1

2(2m+1) , giving space n1/2+ε and time nO(1/ε), when
m = Θ(1/ε).

Asano-Doerr algorithm – optimized

I In fact, if the same idea is applied recursively on the cells with
a differentiated splitting factor (chosen to balance the space
cost) at each of the m levels of recursion, we get a space cost
of n1/2+ε and time nO(lg(1/ε)), when m = Θ(lg(1/ε)).

Outline

Introduction
algorithms for shortest (min-weight) paths
memory-constrained algorithms

Min-weight paths in grid graphs – Asano&Doerr(2011)
overview of basic algorithm
applying a good idea recursively

Min-weight paths in grid graphs – Refinements & Extensions
a different recursive formulation
budgeted recursion – exploiting a universal sequence
combining the ideas

Beyond grid graphs...
min-weight paths in implicit graphs
min-weight paths in general planar graphs

Alternative recursive algorithm

s

t

View the fundamental problem as one of updating path estimates
on boundary vertices (using paths that lie strictly interior to cells).

Alternative recursive algorithm

s

t

View the fundamental problem as one of updating path estimates
on boundary vertices (using paths that lie strictly interior to cells).

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

Alternative recursive algorithm

s

t

What is the cost of this approach?

s

t

s

t

The good news...

s

t

Since we maintain path weights at boundary vertices along one
separating line at each level of recursion, the space cost is O(

√
n).

The bad news...

s

t

We need to make many (expensive) recursive calls at each level.

The bad news...

s

t

We need to make many (expensive) recursive calls at each level.

The bad news...

s

t

We need to make many (expensive) recursive calls at each level.

The bad news...

s

t

We need to make many (expensive) recursive calls at each level.

The bad news...

s

t

We need to make many (expensive) recursive calls at each level.

The bad news...

s

t

2i

In a 2i × 2i grid, a simple path could cross the separating line up
to 2i times. Hence, we need to make O(2i) recursive calls to
subproblems at the next level.

The bad news...

s

t

2i

Thus Cost(i), the cost of finding a min-weight path in a 2i × 2i

grid, satisfies Cost(i) ≤ 2iCost(i − 1),
which means Cost((lg n)/2) = nO(lg n).

If we were lucky...

s

t

2i

...we could guess the amount of time we should devote to
individual recursive calls, so that we do work on a subproblem just
when it will pay off...
...but we still would not be able to certify the solution

If we were lucky...

s

t

2i

...we could guess the amount of time we should devote to
individual recursive calls, so that we do work on a subproblem just
when it will pay off...
...but we still would not be able to certify the solution

Since we can’t count on being lucky...

s

t

2i

...instead, we should construct an resource allocation scheme
(budgeted recursion) that will be sure to subsume all possible
optimal budget allocations.

Universal budget sequences...

A sequence of budgets (think bounds on the exploration length of
paths) for successive subproblems at the same level of recursion is
universal if it contains as a subsequence a sequence of budgets
that is guaranteed to uncover the minimum-cost path.

I Clearly the sequence 22i , 22i , . . . , 22i of length 2i is universal.

I However, we can do better...
Consider instead the sequence σ2i defined inductively by

σs =

{
〈1〉 if s = 0, and

σs−1 � 〈2s〉 � σs−1 otherwise,

(where � signifies concatenation of sequences) .

Universal budget sequences...

A sequence of budgets (think bounds on the exploration length of
paths) for successive subproblems at the same level of recursion is
universal if it contains as a subsequence a sequence of budgets
that is guaranteed to uncover the minimum-cost path.

I Clearly the sequence 22i , 22i , . . . , 22i of length 2i is universal.

I However, we can do better...
Consider instead the sequence σ2i defined inductively by

σs =

{
〈1〉 if s = 0, and

σs−1 � 〈2s〉 � σs−1 otherwise,

(where � signifies concatenation of sequences) .

Universal budget sequences...

A sequence of budgets (think bounds on the exploration length of
paths) for successive subproblems at the same level of recursion is
universal if it contains as a subsequence a sequence of budgets
that is guaranteed to uncover the minimum-cost path.

I Clearly the sequence 22i , 22i , . . . , 22i of length 2i is universal.

I However, we can do better...
Consider instead the sequence σ2i defined inductively by

σs =

{
〈1〉 if s = 0, and

σs−1 � 〈2s〉 � σs−1 otherwise,

(where � signifies concatenation of sequences) .

Universal budget sequences...

A sequence of budgets (think bounds on the exploration length of
paths) for successive subproblems at the same level of recursion is
universal if it contains as a subsequence a sequence of budgets
that is guaranteed to uncover the minimum-cost path.

I Clearly the sequence 22i , 22i , . . . , 22i of length 2i is universal.

I However, we can do better...
Consider instead the sequence σ2i defined inductively by

σs =

{
〈1〉 if s = 0, and

σs−1 � 〈2s〉 � σs−1 otherwise,

(where � signifies concatenation of sequences) .

Properties of this ruler sequence

I the sequence σs is computable in O(2s)-time and Õ(1)-space;

I the sequence σs contains exactly 2s−i appearances of the
integer 2i , for all i ∈ [s], and nothing else;

I (universality) for any positive integer sequence 〈d1, . . . , dx〉
such that

∑
i∈[x] di ≤ 2s , there exists a subsequence

〈ci1 , . . . , cix 〉 of σs such that dj ≤ cij holds for all j ∈ [x]

Properties of this ruler sequence

I the sequence σs is computable in O(2s)-time and Õ(1)-space;

I the sequence σs contains exactly 2s−i appearances of the
integer 2i , for all i ∈ [s], and nothing else;

I (universality) for any positive integer sequence 〈d1, . . . , dx〉
such that

∑
i∈[x] di ≤ 2s , there exists a subsequence

〈ci1 , . . . , cix 〉 of σs such that dj ≤ cij holds for all j ∈ [x]

Properties of this ruler sequence

I the sequence σs is computable in O(2s)-time and Õ(1)-space;

I the sequence σs contains exactly 2s−i appearances of the
integer 2i , for all i ∈ [s], and nothing else;

I (universality) for any positive integer sequence 〈d1, . . . , dx〉
such that

∑
i∈[x] di ≤ 2s , there exists a subsequence

〈ci1 , . . . , cix 〉 of σs such that dj ≤ cij holds for all j ∈ [x]

Properties of this ruler sequence

I the sequence σs is computable in O(2s)-time and Õ(1)-space;

I the sequence σs contains exactly 2s−i appearances of the
integer 2i , for all i ∈ [s], and nothing else;

I (universality) for any positive integer sequence 〈d1, . . . , dx〉
such that

∑
i∈[x] di ≤ 2s , there exists a subsequence

〈ci1 , . . . , cix 〉 of σs such that dj ≤ cij holds for all j ∈ [x]

Proof of universality

(By induction on s)
Suppose that

∑
i∈[x] di ≤ 2s . Choose the smallest m such that∑

i∈[m] di >
1
2

∑
i∈[x] di . Then,

(i) by induction, both 〈d1, . . . , dm−1〉 and 〈dm+1, . . . , dx〉 are
dominated by subsequences of σs−1, and
(ii) dm ≤ 2s .
Hence 〈d1, . . . , dx〉 is dominated by σs = σs−1 � 〈2s〉 � σs−1.

Using budgeted recursion, guided by this universal;
sequence...

Theorem
For any instance of the min-weight path problem on an 2h × 2h

grid the procedure determines the min-weight path in O(29h) time
and Õ(2h) space.

Using budgeted recursion, guided by this universal;
sequence...

Theorem
For any instance of the min-weight path problem on an 2h × 2h

grid the procedure determines the min-weight path in O(29h) time
and Õ(2h) space.

Proof sketch...

I correctness follows directly from universality property

I space complexity is clear

I The cost at the m-th level of recursion, with budget 2s ,
Cost(m, 2s), satisfies Cost(m, 2s) ≤ c · 2hT (2h −m, s), where

T (r , s) =

{
2s if r = 0,

1 + 2
∑

0≤j≤s 2jT (r − 1, s − j) if r > 0.

Proof sketch...

I correctness follows directly from universality property

I space complexity is clear

I The cost at the m-th level of recursion, with budget 2s ,
Cost(m, 2s), satisfies Cost(m, 2s) ≤ c · 2hT (2h −m, s), where

T (r , s) =

{
2s if r = 0,

1 + 2
∑

0≤j≤s 2jT (r − 1, s − j) if r > 0.

Proof sketch...

I correctness follows directly from universality property

I space complexity is clear

I The cost at the m-th level of recursion, with budget 2s ,
Cost(m, 2s), satisfies Cost(m, 2s) ≤ c · 2hT (2h −m, s), where

T (r , s) =

{
2s if r = 0,

1 + 2
∑

0≤j≤s 2jT (r − 1, s − j) if r > 0.

Proof sketch...

I correctness follows directly from universality property

I space complexity is clear

I The cost at the m-th level of recursion, with budget 2s ,
Cost(m, 2s), satisfies Cost(m, 2s) ≤ c · 2hT (2h −m, s), where

T (r , s) =

{
2s if r = 0,

1 + 2
∑

0≤j≤s 2jT (r − 1, s − j) if r > 0.

Proof sketch...

It is straightforward to confirm that

T (r , s) =

{
2r+1 − 1 if r > 0 and s = 0,

2T (r , s − 1) + 2T (r − 1, s)− 1 if r > 0 and s > 0.

Thus, T (r , s) ≤ 2r+s+1
(r+s

s

)
.

It follows that Cost(m, 2s) ≤ c · 2h22h−m+s+1
(2h−m+s

s

)
.

In particular, Cost(0, 22h), the cost of our procedure is O(25h
(4h

2h

)
)

or O(29h).

Proof sketch...

It is straightforward to confirm that

T (r , s) =

{
2r+1 − 1 if r > 0 and s = 0,

2T (r , s − 1) + 2T (r − 1, s)− 1 if r > 0 and s > 0.

Thus, T (r , s) ≤ 2r+s+1
(r+s

s

)
.

It follows that Cost(m, 2s) ≤ c · 2h22h−m+s+1
(2h−m+s

s

)
.

In particular, Cost(0, 22h), the cost of our procedure is O(25h
(4h

2h

)
)

or O(29h).

Combining the two approaches...

I Of course, it makes sense to stop the recursion when the
subproblem size falls below

√
n.

I In fact, it pays to stop even earlier and switch to the
Asano-Doerr method.

I The optimal switch point depends on the desired time-space
tradeoff.

Combining the two approaches...

I Of course, it makes sense to stop the recursion when the
subproblem size falls below

√
n.

I In fact, it pays to stop even earlier and switch to the
Asano-Doerr method.

I The optimal switch point depends on the desired time-space
tradeoff.

Combining the two approaches...

I Of course, it makes sense to stop the recursion when the
subproblem size falls below

√
n.

I In fact, it pays to stop even earlier and switch to the
Asano-Doerr method.

I The optimal switch point depends on the desired time-space
tradeoff.

Combining the two approaches...

I Of course, it makes sense to stop the recursion when the
subproblem size falls below

√
n.

I In fact, it pays to stop even earlier and switch to the
Asano-Doerr method.

I The optimal switch point depends on the desired time-space
tradeoff.

What about reporting the minimum-weight path?...

I Straightforward to maintain predecessor pointer for the target
vertex t, and repeat (at a multiplicative cost proportional to
the optimal path length);

I Alternatively, we can maintain minimum path values from s

and to t at all vertices of the top level separator. Then solve
a sequence of lower-level subproblems recursively. The (time)
cost is dominated by the top-level problem.
Recall the same idea (due to D. Hershberg) was used in the
edit-distance problem...

What about reporting the minimum-weight path?...

I Straightforward to maintain predecessor pointer for the target
vertex t, and repeat (at a multiplicative cost proportional to
the optimal path length);

I Alternatively, we can maintain minimum path values from s

and to t at all vertices of the top level separator. Then solve
a sequence of lower-level subproblems recursively. The (time)
cost is dominated by the top-level problem.
Recall the same idea (due to D. Hershberg) was used in the
edit-distance problem...

What about reporting the minimum-weight path?...

I Straightforward to maintain predecessor pointer for the target
vertex t, and repeat (at a multiplicative cost proportional to
the optimal path length);

I Alternatively, we can maintain minimum path values from s

and to t at all vertices of the top level separator. Then solve
a sequence of lower-level subproblems recursively. The (time)
cost is dominated by the top-level problem.
Recall the same idea (due to D. Hershberg) was used in the
edit-distance problem...

What about reporting the minimum-weight path?...

I Straightforward to maintain predecessor pointer for the target
vertex t, and repeat (at a multiplicative cost proportional to
the optimal path length);

I Alternatively, we can maintain minimum path values from s

and to t at all vertices of the top level separator. Then solve
a sequence of lower-level subproblems recursively. The (time)
cost is dominated by the top-level problem.
Recall the same idea (due to D. Hershberg) was used in the
edit-distance problem...

Outline

Introduction
algorithms for shortest (min-weight) paths
memory-constrained algorithms

Min-weight paths in grid graphs – Asano&Doerr(2011)
overview of basic algorithm
applying a good idea recursively

Min-weight paths in grid graphs – Refinements & Extensions
a different recursive formulation
budgeted recursion – exploiting a universal sequence
combining the ideas

Beyond grid graphs...
min-weight paths in implicit graphs
min-weight paths in general planar graphs

An arrangement of weighted regions with source and
target...

s

t

...and an overlaid grid

s

t

A planar graph

s
t

In joint work with Asano, Nakagawa and Wanatabe, this work has
recently been extended to arbitrary planar directed graphs.

A planar graph...with a small separator

s
t

In joint work with Asano, Nakagawa and Wanatabe [MFCS 2014],
this work is extended to arbitrary planar directed graphs.

Basic ideas for planar graphs...

I Use a space-efficient algorithm for constructing separators
[Imai et al.]

I Maintain separators explicitly and (separated) components
implicitly (using a representative point.

I Reconstruct triangulated components on-demand, using
Reingold’s log-space undirected reachability algorithm

That’s it.....

And they all lived happily ever after.....

THE END

And they all lived happily ever after.....

THE END

	Introduction
	algorithms for shortest (min-weight) paths
	memory-constrained algorithms

	Min-weight paths in grid graphs – Asano&Doerr(2011)
	overview of basic algorithm
	applying a good idea recursively

	Min-weight paths in grid graphs – Refinements & Extensions
	a different recursive formulation
	budgeted recursion – exploiting a universal sequence
	combining the ideas

	Beyond grid graphs...
	min-weight paths in implicit graphs
	min-weight paths in general planar graphs

