
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 8

Department of Computer Science
University of British Columbia

January 29, 2015

1 / 21



Announcements

Assignments...

I Asst3...due today

I Asst2...back

Upcoming Exams / Q/A Sessions ...
I review session: Tuesday, Feb. 03, 5:30-7:00; DMPT 301

I Note...this replaces the group office hour normally held on
Wednesday 3:30-5:00

I Midterm I: Wednesday, Feb. 04, 5:30-7:00; DMPT 301
I covers material up to (and including) Lecture 8 (today)

2 / 21



Announcements

Readings...

I material on hashing [Kleinberg, 13.6; Cormen+, chap 11;
Erickson, chapt 12]

I material on closest-pair problem [Kleinberg]

I material on optimal binary search trees [Erickson 3.5, 5.6;
Cormen+, chapt 13]

I material on adaptive (self-adjusting) search structures; splay
trees [Erickson, chapt. 16]

3 / 21



Looking ahead...

Our goal, in the next few lectures is to understand how we might
circumvent this lower bound, by stepping outside the abstract
comparison-based model. We will consider:

I exploiting assumptions about the structure/size of the key
space U

I exploiting assumptions about the distribution of keys in S

I exploiting assumptions about the pattern of successive queries

I (if time permits) other issues: randomization, error tolerance...

4 / 21



Last class...

Applications of universal hashing (cont.)
I finding the closest pair of points in a point set

I a randomized approach [Kleinberg&Tardos (section 13.7)]
I Golin et al variation of Rabin’s algorithm
I randomized incremental approach...keep updating the closest

pair
I use neighbourhood search structure...implemented as a hash

table

5 / 21



Last class...

Dictionaries with non-uniform access patterns
I fixed (known) access frequencies

I list-structured dictionaries...sorted by access frequency
(decreasing) is optimal

I tree-structured dictionaries...optimal binary search trees
I definition of optimality...natural heuristics don’t work
I optimal substructure property
I cost recurrence
I solution by dynamic programming

6 / 21



Today...

Dictionaries with non-uniform access patterns

I fixed (known) access frequencies
I finish discussion of optimal BSTs

I unknown/changing access probabilities...adaptive search
structures

I list structures...natural adaptive heuristics
I competitive analysis of move-to-front
I application in data compression

I tree structures...splay trees

7 / 21



What does an optimal binary search tree look like?

OPTa,r−1:

xr

OPTa,b:

OPTr+1,b:

Optimal trees satisfy the optimal substructure property

8 / 21



How can we describe its cost?

Let Ca,b denote the cost of OPTa,b. How does Ca,b relate to
Ca,r−1 and Cr+1,b?

Ca,b =

{
0 if a > b
mina≤r≤b{Ca,r−1 + Cr+1,b + Wa,b} if a ≤ b

(1)

where
Wa,b =

∑
a≤i≤b

pi

denotes the cost associated with the root node (xr ).

9 / 21



How can we compute its cost?

Recursively (using (1))? bad idea

I each application of (1) generates many subproblems of size
comparable to the original

I there are only Θ(n2) distinct subproblems in total!

This should suggest a different approach: dynamic programming

10 / 21



A dynamic programming solution

Algorithm pseudocode for optimal BST cost computation

1: for l = 1 to n do
2: for a = 1 to n − l + 1 do
3: evaluate and tabulate Ca,a+l−1 using equation (1)
4: end for
5: end for

Analysis:

I each new entry Ca,a+l−1 can be computed in O(n) time

I total cost (O(n2) entries) is O(n3)

I Note: all Wa,b values can be computed in O(n) time!

11 / 21



Additional remarks

I the approach extends naturally to the situation where we
know qj values: the probability of accessing a key not in the
dictionary, between xj−1 and xj .

I total cost can be reduced to O(n2), by exploiting the fact that
the root of OPTa,b must lie between the root of OPTa,b−1

and the root of OPTa+1,b.

12 / 21



Adaptive search with list-structured dictionaries

The rules...

I we maintain the set S = {x1, . . . , xn} as a linear list L, and
perform sequential search in L for each query.

I we are free to reorganize the list to try and minimize the
cumulative search cost

I we charge

I cost i if we access the i-th element on the list
I no additional cost to relocate accessed element anywhere

earlier in the list
I all other restructuring is done by exchanges of adjacent

elements, at a unit cost per exchange

I can consider insertion and deletion as well...

13 / 21



Adaptive search with list-structured dictionaries

Natural restructuring ideas...

I Frequency-Count: Maintain a frequency count of individual
key accesses. Maintain the list in order of decreasing access
frequency

I Transpose: Following the access of a key, exchange it with its
predecessor on the list

I Move-to-Front: Following the access of a key, move it all the
way to the front of the list (keeping the order of other keys
unchanged)

I Decreasing-Total-Frequency: Build an optimal static list,
based on knowledge of total access frequency (probability)

I Clairvoyant: Restructure to minimize total cost, knowing in
advance the sequence of queries (optimal dynamic list).

14 / 21



Adaptive search with list-structured dictionaries

Competitive analysis...

I We will compare the cost of Move-to-Front (MF) with the
Decreasing-Total-Frequency (DF) and the
Clairvoyant-Restructuring (CR) strategies on the same family
of access sequences

I Let pi , 1 ≤ i ≤ n, be the access probability for key xi ; we
assume pi ≥ pj , for all i ≤ j .

I We already know that the expected cost of DF, EDF , is∑
1≤i≤n pi · i

I How does the expected cost of MF, EMF , compare?

15 / 21



MF is 2-competitive..

Theorem
EMF ≤ 2 · EDF − 1

Proof.
It suffices to demonstrate the Lemma below, since
EMF = 1 + 2 ·

∑
1≤i<j≤n

pipj
pi+pj

≤ 1 + 2 ·
∑

1≤i<j≤n pj
≤ 1 + 2 ·

∑
1≤j≤n(j − 1)pj = 2 · EDF − 1

Lemma
EMF = 1 + 2 ·

∑
1≤i<j≤n

pipj
pi+pj

Key idea: what is the probability (in ”steady state”) that key xj
appears before key xi?

pj
pi+pj

16 / 21



MF is 2-competitive..

In fact, the Move-to-Front heuristic is 2-competitive in an even
stronger sense [c.f. D.D. Sleator and R.E. Tarjan, “Amortized
efficiency of list update and paging rules”, Communications of
ACM, 28(2), 1985, pp. 202-208.]...

Theorem
For any algorithm A and any sequence s of m access, insert, and
delete operations starting with the empty list

CMF (s) ≤ 2CA(s)−m

Proof.
an amortization argument...
...using the number of inversions between competing lists as a
potential function

17 / 21



Data Compression

Linear list based scheme [Bentley et al., C.ACM ’86]

I first encode S as a sequence of integers

I then encode the integers using a variable length prefix code

Intuition:
I integer j can be encoded in close to lg j bits

I in fact 1 + blg jc+ 2blg(1 + blg jc)c bits suffice

I move-to-front on list Σ can be used to encode frequently
occurring symbols with small integers

18 / 21



Data Compression

Linear list based scheme [Bentley et al., C.ACM ’86]

Properties:

I the (adaptive) scheme is never much worse than the optimal
static scheme (Huffman) and can be much better if the local
frequency of symbols can deviate significantly from the global
frequency

I if strings are generated by a fixed (but unknown) probability
distribution, the code length is optimal (up to lower order
terms)

I idea combines with Burrows-Wheeler transform to enable
modern compression schemes (such as bzip2)

19 / 21



What about tree-structured dictionaries?

The rules...

I we maintain the set S = {x1, . . . , xn} as a binary search tree
T , and perform search in T for each query.

I we are free to reorganize the tree to try and minimize the
cumulative search cost

I we charge

I cost i if we access an element at depth i − 1 in the tree
I all restructuring is done by local modifications within the tree,

at a unit cost per operation

I what is the analog of the (list) transpose operation?
+ tree rotation!

20 / 21



Next time...

Exploiting non-uniform access patterns

I unknown/changing access probabilities
... adaptive (self-organizing) search structures

I tree-structured dictionaries

21 / 21


