
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 7

Department of Computer Science
University of British Columbia

January 27, 2015

1 / 25

Announcements

Assignments...

I Asst3...due Thursday

Upcoming Exams / Q/A Sessions ...

I review session: Tuesday, Feb. 03, 5:30-7:00; DMPT 301
I exam: Wednesday, Feb. 04, 5:30-7:00; DMPT 301

I covers material up to (and including) Lecture 8 (January 29)

Readings...

I material on hashing [Kleinberg, 13.6; Cormen+, chap 11;
Erickson, chapt 12]

I material on closest-pair problem [Kleinberg]

I material on optimal binary search trees [Erickson 3.5, 5.6;
Cormen+, chapt 13]

I material on adaptive (self-adjusting) search structures; splay
trees [Erickson, chapt. 16]

2 / 25

Looking ahead...

Our goal, in the next few lectures is to understand how we might
circumvent this lower bound, by stepping outside the abstract
comparison-based model. We will consider:

I exploiting assumptions about the structure/size of the key
space U

I exploiting assumptions about the distribution of keys in S

I exploiting assumptions about the pattern of successive queries

I (if time permits) other issues: randomization, error tolerance...

3 / 25

Last class...

Assignment 1 discussion
Compact universal families H exist and are efficient to construct

I Kleinberg&Tardos (section 13.6) describe one construction
based on modular arithmetic

Applications of universal hashing (cont.)
I finding the closest pair of points in a point set

I intuition from 1-d: reduction to sorting
I divide and conquer in 2-d [Kleinberg&Tardos (section 5.4)]
I identification of neighbourly point pairs, using Voronoi

diagrams

4 / 25

Today...

Applications of universal hashing (cont.)
I finding the closest pair of points in a point set

I a randomized approach [Kleinberg&Tardos (section 13.7)]

Dictionaries with non-uniform access patterns
I fixed (known) access frequencies

I list-structured dictionaries
I tree-structured dictionaries...optimal binary search trees

5 / 25

Today...

Applications of universal hashing (cont.)
I finding the closest pair of points in a point set

I a randomized approach [Kleinberg&Tardos (section 13.7)]

Dictionaries with non-uniform access patterns
I fixed (known) access frequencies

I list-structured dictionaries
I tree-structured dictionaries...optimal binary search trees

5 / 25

Finding the closest pair of points in a point set

Problem definition
Given a collection of n points in real d-dimensional space, identify
the pair of points {pi , pj}whose separation (||pi − pj ||) is smallest.

6 / 25

Finding the closest pair of points in a point set

A randomized incremental approach in <2

Historical note...

I The first problem that popularized the idea of using
randomization in the design of algorithms. [Michael Rabin,
early 1970’s]

I Las Vegas algorithms (unlike Monte Carlo algorithms) use
randomization to reduce the complexity of deterministic
algorithms, without compromising correctness.

I The approach described here (and in Kleinberg) is a
modification published by Golin et al., 1995.

7 / 25

Finding the closest pair of points in a point set

A randomized incremental approach in <2

Historical note...

I The first problem that popularized the idea of using
randomization in the design of algorithms. [Michael Rabin,
early 1970’s]

I Las Vegas algorithms (unlike Monte Carlo algorithms) use
randomization to reduce the complexity of deterministic
algorithms, without compromising correctness.

I The approach described here (and in Kleinberg) is a
modification published by Golin et al., 1995.

7 / 25

Finding the closest pair of points in a point set

A randomized incremental approach in <2

Algorithm randomized closest-pair in [0, 1]2

1: re-order input points randomly: p1, p2, . . . , pn
2: σmin ← σ(p1, p2); i ← 3
3: while i < n + 1 do
4: while Nσmin(pi) ∩ {p1, . . . , pi−1} = ∅ do
5: i ← i + 1
6: end while
7: pj ← closest point in {p1, . . . , pi−1} to pi
8: σmin ← σ(pi , pj)
9: i ← i + 1

10: end while

where Nσmin(p) denotes the σmin-neighbourhood of p

8 / 25

Finding the closest pair of points in a point set

A randomized incremental approach in <2

Algorithm randomized closest-pair in [0, 1]2

1: re-order input points randomly: p1, p2, . . . , pn
2: σmin ← σ(p1, p2); i ← 3
3: while i < n + 1 do
4: while Nσmin(pi) ∩ {p1, . . . , pi−1} = ∅ do
5: i ← i + 1
6: end while
7: pj ← closest point in {p1, . . . , pi−1} to pi
8: σmin ← σ(pi , pj)
9: i ← i + 1

10: end while

where Nσmin(p) denotes the σmin-neighbourhood of p

8 / 25

Finding the closest pair of points in a point set

A randomized incremental approach in <2

Algorithm randomized closest-pair in [0, 1]2

1: re-order input points randomly: p1, p2, . . . , pn
2: σmin ← σ(p1, p2); i ← 3
3: while i < n + 1 do
4: while Nσmin(pi) ∩ {p1, . . . , pi−1} = ∅ do
5: i ← i + 1
6: end while
7: pj ← closest point in {p1, . . . , pi−1} to pi
8: σmin ← σ(pi , pj)
9: i ← i + 1

10: end while

where Nσmin(p) denotes the σmin-neighbourhood of p

9 / 25

Finding the closest pair of points in a point set

A randomized incremental approach in <2

The algorithm proceeds in a sequence of stages during which the
stage invariant Nσmin(pi) ∩ {p1, . . . , pi−1} = ∅ holds.

Between stages we update σmin by computing
pj ← closest point in {p1, . . . , pi−1} to pi

The cost depends on

I the cost of testing the stage invariant

I the number and cost of stage transitions

10 / 25

Finding the closest pair of points in a point set

A randomized incremental approach in <2

The algorithm proceeds in a sequence of stages during which the
stage invariant Nσmin(pi) ∩ {p1, . . . , pi−1} = ∅ holds.

Between stages we update σmin by computing
pj ← closest point in {p1, . . . , pi−1} to pi

The cost depends on

I the cost of testing the stage invariant

I the number and cost of stage transitions

10 / 25

Testing the stage invariant

I divide space [0, 1]2 into cells of side length σmin/2

I point p belongs to cell(p) = (b p.x
σmin/2

c, b p.y
σmin/2

c)
I by construction no cell contains more than one point among
{p1, . . . , pi−1}

I stage invariant fails if point pi has a point among
{p1, . . . , pi−1} in the neighbourhood of cell(pi)

11 / 25

Testing the stage invariant

I divide space [0, 1]2 into cells of side length σmin/2

I point p belongs to cell(p) = (b p.x
σmin/2

c, b p.y
σmin/2

c)
I by construction no cell contains more than one point among
{p1, . . . , pi−1}

I stage invariant fails if point pi has a point among
{p1, . . . , pi−1} in the neighbourhood of cell(pi)

11 / 25

Testing the stage invariant

I divide space [0, 1]2 into cells of side length σmin/2

I point p belongs to cell(p) = (b p.x
σmin/2

c, b p.y
σmin/2

c)

I by construction no cell contains more than one point among
{p1, . . . , pi−1}

I stage invariant fails if point pi has a point among
{p1, . . . , pi−1} in the neighbourhood of cell(pi)

11 / 25

Testing the stage invariant

I divide space [0, 1]2 into cells of side length σmin/2

I point p belongs to cell(p) = (b p.x
σmin/2

c, b p.y
σmin/2

c)
I by construction no cell contains more than one point among
{p1, . . . , pi−1}

I stage invariant fails if point pi has a point among
{p1, . . . , pi−1} in the neighbourhood of cell(pi)

11 / 25

Testing the stage invariant

I divide space [0, 1]2 into cells of side length σmin/2

I point p belongs to cell(p) = (b p.x
σmin/2

c, b p.y
σmin/2

c)
I by construction no cell contains more than one point among
{p1, . . . , pi−1}

I stage invariant fails if point pi has a point among
{p1, . . . , pi−1} in the neighbourhood of cell(pi)

11 / 25

Cost of stage transitions

I when σmin is updated need to rebuild the neighbourhood
search structure
recall implicit initialization

I need to re-insert i points if stage ends on i-th input

I how many stages do we expect?
Θ(lg n)

12 / 25

Cost of stage transitions

I when σmin is updated need to rebuild the neighbourhood
search structure

recall implicit initialization

I need to re-insert i points if stage ends on i-th input

I how many stages do we expect?
Θ(lg n)

12 / 25

Cost of stage transitions

I when σmin is updated need to rebuild the neighbourhood
search structure
recall implicit initialization

I need to re-insert i points if stage ends on i-th input

I how many stages do we expect?
Θ(lg n)

12 / 25

Cost of stage transitions

I when σmin is updated need to rebuild the neighbourhood
search structure
recall implicit initialization

I need to re-insert i points if stage ends on i-th input

I how many stages do we expect?
Θ(lg n)

12 / 25

Cost of stage transitions

I when σmin is updated need to rebuild the neighbourhood
search structure
recall implicit initialization

I need to re-insert i points if stage ends on i-th input

I how many stages do we expect?

Θ(lg n)

12 / 25

Cost of stage transitions

I when σmin is updated need to rebuild the neighbourhood
search structure
recall implicit initialization

I need to re-insert i points if stage ends on i-th input

I how many stages do we expect?
Θ(lg n)

12 / 25

How do we represent the neighbourhood search structure?

It is just a BIG dictionary... use a hash table

I O(1)-time expected cost for insertion and neighbourhood
queries (find)

I space is O(n)

13 / 25

How do we represent the neighbourhood search structure?

It is just a BIG dictionary...

use a hash table

I O(1)-time expected cost for insertion and neighbourhood
queries (find)

I space is O(n)

13 / 25

How do we represent the neighbourhood search structure?

It is just a BIG dictionary... use a hash table

I O(1)-time expected cost for insertion and neighbourhood
queries (find)

I space is O(n)

13 / 25

How do we represent the neighbourhood search structure?

It is just a BIG dictionary... use a hash table

I O(1)-time expected cost for insertion and neighbourhood
queries (find)

I space is O(n)

13 / 25

How do we represent the neighbourhood search structure?

It is just a BIG dictionary... use a hash table

I O(1)-time expected cost for insertion and neighbourhood
queries (find)

I space is O(n)

13 / 25

Total expected cost

I find operations: O(n) (only look in O(1) cells per point)

I distance calculations: O(n) (only compute distance with O(1)
neighbours)

I rebuild operations: O(s), where s is the number of stages

I insert operations: n +
∑

1≤i≤n(iXi), where Xi = 1 if the i-th
insert leads to a closest pair update (and Xi = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...

14 / 25

Total expected cost

I find operations: O(n) (only look in O(1) cells per point)

I distance calculations: O(n) (only compute distance with O(1)
neighbours)

I rebuild operations: O(s), where s is the number of stages

I insert operations: n +
∑

1≤i≤n(iXi), where Xi = 1 if the i-th
insert leads to a closest pair update (and Xi = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...

14 / 25

Total expected cost

I find operations: O(n) (only look in O(1) cells per point)

I distance calculations: O(n) (only compute distance with O(1)
neighbours)

I rebuild operations: O(s), where s is the number of stages

I insert operations: n +
∑

1≤i≤n(iXi), where Xi = 1 if the i-th
insert leads to a closest pair update (and Xi = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...

14 / 25

Total expected cost

I find operations: O(n) (only look in O(1) cells per point)

I distance calculations: O(n) (only compute distance with O(1)
neighbours)

I rebuild operations: O(s), where s is the number of stages

I insert operations: n +
∑

1≤i≤n(iXi), where Xi = 1 if the i-th
insert leads to a closest pair update (and Xi = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...

14 / 25

Total expected cost

I find operations: O(n) (only look in O(1) cells per point)

I distance calculations: O(n) (only compute distance with O(1)
neighbours)

I rebuild operations: O(s), where s is the number of stages

I insert operations: n +
∑

1≤i≤n(iXi), where Xi = 1 if the i-th
insert leads to a closest pair update (and Xi = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...

14 / 25

Total expected cost

I find operations: O(n) (only look in O(1) cells per point)

I distance calculations: O(n) (only compute distance with O(1)
neighbours)

I rebuild operations: O(s), where s is the number of stages

I insert operations: n +
∑

1≤i≤n(iXi), where Xi = 1 if the i-th
insert leads to a closest pair update (and Xi = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...

14 / 25

Exploiting non-uniform access patterns

Known access probabilities for individual keys

I suppose each key xi ∈ S has a fixed (and known) associated
access probability pi

I how can we exploit this??

Suppose our dictionary is a list L

I how should we organize L to minimize the expected access
cost:

∑
xi∈S pi · posnL(xi)?

I simple interchange argument demonstrates that order by
decreasing access probability is optimal

15 / 25

Exploiting non-uniform access patterns

Known access probabilities for individual keys

I suppose each key xi ∈ S has a fixed (and known) associated
access probability pi

I how can we exploit this??

Suppose our dictionary is a list L

I how should we organize L to minimize the expected access
cost:

∑
xi∈S pi · posnL(xi)?

I simple interchange argument demonstrates that order by
decreasing access probability is optimal

15 / 25

Exploiting non-uniform access patterns

Known access probabilities for individual keys

I suppose each key xi ∈ S has a fixed (and known) associated
access probability pi

I how can we exploit this??

Suppose our dictionary is a list L

I how should we organize L to minimize the expected access
cost:

∑
xi∈S pi · posnL(xi)?

I simple interchange argument demonstrates that order by
decreasing access probability is optimal

15 / 25

Exploiting non-uniform access patterns

Known access probabilities for individual keys

I suppose each key xi ∈ S has a fixed (and known) associated
access probability pi

I how can we exploit this??

Suppose our dictionary is a list L

I how should we organize L to minimize the expected access
cost:

∑
xi∈S pi · posnL(xi)?

I simple interchange argument demonstrates that order by
decreasing access probability is optimal

15 / 25

Exploiting non-uniform access patterns

Known access probabilities for individual keys

I suppose each key xi ∈ S has a fixed (and known) associated
access probability pi

I how can we exploit this??

Suppose our dictionary is a list L

I how should we organize L to minimize the expected access
cost:

∑
xi∈S pi · posnL(xi)?

I simple interchange argument demonstrates that order by
decreasing access probability is optimal

15 / 25

Known access probabilities for individual keys

What if our dictionary is a tree?

I how should we organize the tree T to minimize the expected
access cost:∑

xi∈S
pi · (depthT (xi) + 1) = 1 +

∑
xi∈S

pi · depthT (xi)

I this tree is called an optimal binary search tree

16 / 25

Known access probabilities for individual keys

What if our dictionary is a tree?

I how should we organize the tree T to minimize the expected
access cost:∑

xi∈S
pi · (depthT (xi) + 1) = 1 +

∑
xi∈S

pi · depthT (xi)

I this tree is called an optimal binary search tree

16 / 25

Some reasonable heuristics...

What does our experience suggest?

I balance the tree (minimize the maximum node depth)

I choose root to balance the probabilities of subtrees

I put element with highest probability at the root

None of these guarantees optimal behaviour.

17 / 25

Some reasonable heuristics...

What does our experience suggest?

I balance the tree (minimize the maximum node depth)

I choose root to balance the probabilities of subtrees

I put element with highest probability at the root

None of these guarantees optimal behaviour.

17 / 25

Some reasonable heuristics...

What does our experience suggest?

I balance the tree (minimize the maximum node depth)

I choose root to balance the probabilities of subtrees

I put element with highest probability at the root

None of these guarantees optimal behaviour.

17 / 25

Some reasonable heuristics...

What does our experience suggest?

I balance the tree (minimize the maximum node depth)

I choose root to balance the probabilities of subtrees

I put element with highest probability at the root

None of these guarantees optimal behaviour.

17 / 25

Some reasonable heuristics...

What does our experience suggest?

I balance the tree (minimize the maximum node depth)

I choose root to balance the probabilities of subtrees

I put element with highest probability at the root

None of these guarantees optimal behaviour.

17 / 25

What does a binary search tree look like?

BST(S):

xr

BST(S<xr
) BST(S>xr

)

BST(∅)=NIL:

depthBST(S)(x) =

1 + depthBST(S<xr)

(x) if x < xr
0 if x = xr
1 + depthBST(S>xr)

(x) if x > xr

18 / 25

What does a binary search tree look like?

BST(S):

xr

BST(S<xr
) BST(S>xr

)

BST(∅)=NIL:

depthBST(S)(x) =

1 + depthBST(S<xr)

(x) if x < xr
0 if x = xr
1 + depthBST(S>xr)

(x) if x > xr

18 / 25

What does an optimal binary search tree look like?

Ta,r−1:

xr

OPTa,b:

Tr+1,b:

OPTa,b denotes the optimal tree for the key sequence
xa, xa+1, . . . , xb

19 / 25

What does an optimal binary search tree look like?

OPTa,r−1:

xr

OPTa,b:

OPTr+1,b:

Optimal trees satisfy the optimal substructure property

20 / 25

How can we describe its cost?

Let Ca,b denote the cost of OPTa,b. How does Ca,b relate to
Ca,r−1 and Cr+1,b?

Ca,b =

{
0 if a > b
mina≤r≤b{Ca,r−1 + Cr+1,b + Wa,b} if a ≤ b

(1)

where
Wa,b =

∑
a≤i≤b

pi

denotes the cost associated with the root node (xr).

21 / 25

How can we describe its cost?

Let Ca,b denote the cost of OPTa,b. How does Ca,b relate to
Ca,r−1 and Cr+1,b?

Ca,b =

{
0 if a > b
mina≤r≤b{Ca,r−1 + Cr+1,b + Wa,b} if a ≤ b

(1)

where
Wa,b =

∑
a≤i≤b

pi

denotes the cost associated with the root node (xr).

21 / 25

How can we compute its cost?

Recursively (using (1))?

bad idea

I each application of (1) generates many subproblems of size
comparable to the original

I there are only Θ(n2) distinct subproblems in total!

This should suggest a different approach: dynamic programming

22 / 25

How can we compute its cost?

Recursively (using (1))? bad idea

I each application of (1) generates many subproblems of size
comparable to the original

I there are only Θ(n2) distinct subproblems in total!

This should suggest a different approach: dynamic programming

22 / 25

How can we compute its cost?

Recursively (using (1))? bad idea

I each application of (1) generates many subproblems of size
comparable to the original

I there are only Θ(n2) distinct subproblems in total!

This should suggest a different approach: dynamic programming

22 / 25

How can we compute its cost?

Recursively (using (1))? bad idea

I each application of (1) generates many subproblems of size
comparable to the original

I there are only Θ(n2) distinct subproblems in total!

This should suggest a different approach: dynamic programming

22 / 25

How can we compute its cost?

Recursively (using (1))? bad idea

I each application of (1) generates many subproblems of size
comparable to the original

I there are only Θ(n2) distinct subproblems in total!

This should suggest a different approach:

dynamic programming

22 / 25

How can we compute its cost?

Recursively (using (1))? bad idea

I each application of (1) generates many subproblems of size
comparable to the original

I there are only Θ(n2) distinct subproblems in total!

This should suggest a different approach: dynamic programming

22 / 25

A dynamic programming solution

Algorithm pseudocode for optimal BST cost computation

1: for l = 1 to n do
2: for a = 1 to n − l + 1 do
3: evaluate and tabulate Ca,a+l−1 using equation (1)
4: end for
5: end for

Analysis:

I each new entry Ca,a+l−1 can be computed in O(n) time

I total cost (O(n2) entries) is O(n3)

I Note: all Wa,b values can be computed in O(n) time!

23 / 25

A dynamic programming solution

Algorithm pseudocode for optimal BST cost computation

1: for l = 1 to n do
2: for a = 1 to n − l + 1 do
3: evaluate and tabulate Ca,a+l−1 using equation (1)
4: end for
5: end for

Analysis:

I each new entry Ca,a+l−1 can be computed in O(n) time

I total cost (O(n2) entries) is O(n3)

I Note: all Wa,b values can be computed in O(n) time!

23 / 25

A dynamic programming solution

Algorithm pseudocode for optimal BST cost computation

1: for l = 1 to n do
2: for a = 1 to n − l + 1 do
3: evaluate and tabulate Ca,a+l−1 using equation (1)
4: end for
5: end for

Analysis:

I each new entry Ca,a+l−1 can be computed in O(n) time

I total cost (O(n2) entries) is O(n3)

I Note: all Wa,b values can be computed in O(n) time!

23 / 25

Additional remarks

I the approach extends naturally to the situation where we
know qj values: the probability of accessing a key not in the
dictionary, between xj−1 and xj .

I total cost can be reduced to O(n2), by exploiting the fact that
the root of OPTa,b must lie between the root of OPTa,b−1
and the root of OPTa+1,b.

24 / 25

Additional remarks

I the approach extends naturally to the situation where we
know qj values: the probability of accessing a key not in the
dictionary, between xj−1 and xj .

I total cost can be reduced to O(n2), by exploiting the fact that
the root of OPTa,b must lie between the root of OPTa,b−1
and the root of OPTa+1,b.

24 / 25

Additional remarks

I the approach extends naturally to the situation where we
know qj values: the probability of accessing a key not in the
dictionary, between xj−1 and xj .

I total cost can be reduced to O(n2), by exploiting the fact that
the root of OPTa,b must lie between the root of OPTa,b−1
and the root of OPTa+1,b.

24 / 25

Next time...

Exploiting non-uniformity access patterns

I unknown/changing access probabilities; adaptive search
structures (splay trees)

25 / 25

