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Announcements

Assignments...

I Asst1...back today (with some discussion)

I Asst2... due today

I Asst3 out....(due next Thursday)

Upcoming Exams / Q/A Sessions ...

I review session: Tuesday, Feb. 03, 5:30-7:00; room TBA
I exam: Wednesday, Feb. 04, 5:30-7:00; room TBA

I covers material up to Lecture 8 (January 29)

Readings...

I material on hashing [Kleinberg, 13.6; Cormen+, chap 11;
Erickson, chapt 12]

I material on closest-pair problem [Kleinberg]
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Looking ahead...

Our goal, in the next few lectures is to understand how we might
circumvent this lower bound, by stepping outside the abstract
comparison-based model. We will consider:

I exploiting assumptions about the structure/size of the key
space U

I exploiting assumptions about the distribution of keys in S

I exploiting assumptions about the pattern of successive queries

I (if time permits) other issues: randomization, error tolerance...
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Last class...

inputs are drawn from a restricted universe U = {0, 1, . . . u − 1}
(cont.)

I overcoming space concerns with previous structures
I hashing (the role of randomization)
I universal hashing

I properties
I application...perfect hashing
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Today...

Compact universal families H exist and are efficient to construct

I Kleinberg&Tardos (section 13.6) describe one construction
based on modular arithmetic

Applications of universal hashing (cont.)

I finding the closest pair of points in a point set:
Kleinberg&Tardos (section 13.7)
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Compact universal families H exist and are efficient to
construct

Kleinberg&Tardos (section 13.6) describe one construction based
on modular arithmetic
Assumptions:

I table T has size m > |S |, where m is a prime number

I keys are drawn from universe U = {0, 1, . . .m2 − 1}
(extends easily to U = {0, 1, . . .mk − 1}, k > 2)
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Compact universal families H exist and are efficient to
construct

Kleinberg&Tardos (section 13.6) describe one construction based
on modular arithmetic
Basic idea:

I any element x ∈ U can bed expressed as a pair
(x0, x1) ∈ {0, 1, . . .m − 1}2, where x0 = x ÷m and
x1 = x mod m.

I for any a = (a0, a1) ∈ {0, 1, . . .m − 1}2, we can define a hash
function

ha(x) = (a0x0 + a1x1) mod m.
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Compact universal families H exist and are efficient to
construct

Kleinberg&Tardos (section 13.6) describe one construction based
on modular arithmetic
To demonstrate universality of H, the set of all m2 such functions,
we need to show that if x 6= y then for at most |H|/m = m
choices for a = (a0, a1), ha(x) = ha(y).
But
ha(x) = ha(y)
⇒ (a0x0 + a1x1) ≡ (a0y0 + a1y1) mod m
⇒ a0(x0 − y0) ≡ a1(x1 − y1) mod m
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Compact universal families H exist and are efficient to
construct

Kleinberg&Tardos (section 13.6) describe one construction based
on modular arithmetic
But if (x0 6= y0) (x1 6= y1 is similar) then

I (x0 − y0) has a unique inverse mod m (here we use primality)

I so...a0 ≡ a1(x1 − y1)(x0 − y0)−1 mod m

I so...for fixed a1 (m choices) there is a unique choice for a0
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Finding the closest pair of points in a point set

Problem definition
Given a collection of n points in real d-dimensional space, identify
the pair of points {pi , pj}whose separation ( ||pi − pj ||) is smallest.

Naive solution...
Compute all Θ(n2) inter-point distances, and minimize...
Can we do better?

Closest pair in <1

Simple O(n lg n)-time algorithm by reduction to sorting.
Is there an analogous result in higher dimensions?
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Finding the closest pair of points in a point set

A divide-and-conquer approach in <2

Algorithm closest-pair in <2

1: split point set into two halves, by x-coordinate
2: find the closest pair within each half (recursively)
3: using the left-separation σL and right-separation σR , find a left-

right pair (if any) that has separation σ < min{σL, σR}

Cost?

I O(n lg n), because (i) we can pre-sort by dimension, (ii)
maintain this sort in subproblems, and use the y -sort to
implement the combine step in O(n) time.

I extends to higher dimensions as well

See Kleinberg&Tardos (Section 5.4) for full details...
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Finding the closest pair of points in a point set

A randomized incremental approach in <2

Algorithm randomized closest-pair in [0, 1]2

1: re-order input points randomly: p1, p2, . . . , pn
2: σmin ← σ(p1, p2); i ← 3
3: while i < n + 1 do
4: while Nσmin(pi ) ∩ {p1, . . . , pi−1} = ∅ do
5: i ← i + 1
6: end while
7: pj ← closest point in {p1, . . . , pi−1} to pi
8: σmin ← σ(pi , pj)
9: i ← i + 1

10: end while

where Nσmin(p) denotes the σmin-neighbourhood of p
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Finding the closest pair of points in a point set

A randomized incremental approach in <2

The algorithm proceeds in a sequence of stages during which the
stage invariant Nσmin(pi ) ∩ {p1, . . . , pi−1} = ∅ holds.

Between stages we update σmin by computing
pj ← closest point in {p1, . . . , pi−1} to pi

The cost depends on

I the cost of testing the stage invariant

I the number and cost of stage transitions
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Testing the stage invariant

I divide space [0, 1]2 into cells of side length σmin/2

I point p belongs to cell(p) = (b p.x
σmin/2

c, b p.y
σmin/2

c)
I by construction no cell contains more than one point among
{p1, . . . , pi−1}

I stage invariant fails if point pi has a point among
{p1, . . . , pi−1} in the neighbourhood of cell(pi )
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Cost of stage transitions

I when σmin is updated need to rebuild the neighbourhood
search structure

I cost is proportional to i if we rebuild on i-th insertion
recall implicit initialization

I how many stages do we expect?
Θ(lg n)
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Total expected cost

I find operations: O(n) (only look in O(1) cells per point)

I distance calculations: O(n) (only compute distance with O(1)
neighbours)

I rebuild operations: O(s), where s is the number of stages

I insert operations: n +
∑

1≤i≤n(iXi ), where Xi = 1 if the i-th
insert leads to a closest pair update (and Xi = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...
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Next time...

Dictionaries with non-uniform access patterns

I fixed (known) access frequencies

I unknown/changing access frequencies
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