CS 420: Advanced Algorithm Design and Analysis Spring 2015 – Lecture 6

Department of Computer Science University of British Columbia

January 22, 2015

Announcements

Assignments...

- Asst1...back today (with some discussion)
- Asst2... due today
- Asst3 out....(due next Thursday)

Upcoming Exams / Q/A Sessions ...

- review session: Tuesday, Feb. 03, 5:30-7:00; room TBA
- exam: Wednesday, Feb. 04, 5:30-7:00; room TBA
 - covers material up to Lecture 8 (January 29)

Readings...

- material on hashing [Kleinberg, 13.6; Cormen+, chap 11; Erickson, chapt 12]
- material on closest-pair problem [Kleinberg]

Our goal, in the next few lectures is to understand how we might circumvent this lower bound, by *stepping outside the abstract comparison-based model*. We will consider:

- exploiting assumptions about the structure/size of the key space U
- \blacktriangleright exploiting assumptions about the distribution of keys in S
- exploiting assumptions about the pattern of successive queries
- ▶ (if time permits) other issues: randomization, error tolerance...

Last class...

inputs are drawn from a restricted universe $\mathcal{U} = \{0, 1, \dots u - 1\}$ (cont.)

- overcoming space concerns with previous structures
 - hashing (the role of randomization)
 - universal hashing
 - properties
 - application...perfect hashing

Today...

Compact universal families $\ensuremath{\mathcal{H}}$ exist and are efficient to construct

 Kleinberg&Tardos (section 13.6) describe one construction based on modular arithmetic

Applications of universal hashing (cont.)

 finding the closest pair of points in a point set: Kleinberg&Tardos (section 13.7)

Kleinberg&Tardos (section 13.6) describe one construction based on modular arithmetic

Assumptions:

- table T has size m > |S|, where m is a prime number
- ▶ keys are drawn from universe U = {0, 1, ... m² − 1} (extends easily to U = {0, 1, ... m^k − 1}, k > 2)

Kleinberg&Tardos (section 13.6) describe one construction based on modular arithmetic

Basic idea:

- ▶ any element $x \in U$ can bed expressed as a *pair* $(x_0, x_1) \in \{0, 1, ..., m 1\}^2$, where $x_0 = x \div m$ and $x_1 = x \mod m$.
- ▶ for any $a = (a_0, a_1) \in \{0, 1, \dots, m-1\}^2$, we can define a hash function

$$h_a(x) = (a_0 x_0 + a_1 x_1) \mod m.$$

Kleinberg&Tardos (section 13.6) describe one construction based on modular arithmetic

To demonstrate universality of \mathcal{H} , the set of all m^2 such functions, we need to show that if $x \neq y$ then for at most $|\mathcal{H}|/m = m$ choices for $a = (a_0, a_1)$, $h_a(x) = h_a(y)$. But $h_a(x) = h_a(y)$ $\Rightarrow (a_0x_0 + a_1x_1) \equiv (a_0y_0 + a_1y_1) \mod m$

 $\Rightarrow (x_0 \land y_0 + a_1 \land y_1) = (a_0 y_0 + a_1 y_1) \mod m$ $\Rightarrow a_0(x_0 - y_0) \equiv a_1(x_1 - y_1) \mod m$

Kleinberg&Tardos (section 13.6) describe one construction based on modular arithmetic But if $(x_0 \neq y_0)$ $(x_1 \neq y_1$ is similar) then

- $(x_0 y_0)$ has a *unique inverse* mod *m* (here we use primality)
- so... $a_0 \equiv a_1(x_1 y_1)(x_0 y_0)^{-1} \mod m$
- ▶ so...for fixed a_1 (*m* choices) there is a *unique* choice for a_0

Problem definition

Given a collection of *n* points in real *d*-dimensional space, identify the pair of points $\{p_i, p_j\}$ whose separation $(||p_i - p_j||)$ is smallest.

Naive solution...

Compute all $\Theta(n^2)$ inter-point distances, and minimize... Can we do better?

Closest pair in \Re^1

Simple $O(n \lg n)$ -time algorithm by reduction to sorting. Is there an analogous result in higher dimensions?

A divide-and-conquer approach in \Re^2

Algorithm closest-pair in \Re^2

- 1: split point set into two halves, by x-coordinate
- 2: find the closest pair within each half (recursively)
- 3: using the left-separation σ_L and right-separation σ_R , find a leftright pair (if any) that has separation $\sigma < \min\{\sigma_L, \sigma_R\}$

Cost?

- ► O(n lg n), because (i) we can pre-sort by dimension, (ii) maintain this sort in subproblems, and use the y-sort to implement the combine step in O(n) time.
- extends to higher dimensions as well

See Kleinberg&Tardos (Section 5.4) for full details...

A randomized incremental approach in \Re^2

Algorithm randomized closest-pair in $[0, 1]^2$

1: re-order input points randomly: p_1, p_2, \ldots, p_n

2:
$$\sigma_{\min} \leftarrow \sigma(p_1, p_2); i \leftarrow 3$$

- 3: while i < n + 1 do
- 4: while $\operatorname{N}_{\sigma_{\min}}(p_i) \cap \{p_1, \dots, p_{i-1}\} = \emptyset$ do

5:
$$i \leftarrow i + 1$$

- 6: end while
- 7: $p_j \leftarrow \text{closest point in } \{p_1, \ldots, p_{i-1}\} \text{ to } p_i$
- 8: $\sigma_{\min} \leftarrow \sigma(p_i, p_j)$
- 9: $i \leftarrow i + 1$
- 10: end while

where $\mathrm{N}_{\sigma_{\min}}(\textbf{\textit{p}})$ denotes the $\sigma_{\min}\text{-neighbourhood}$ of $\textbf{\textit{p}}$

A randomized incremental approach in \Re^2

Algorithm randomized closest-pair in $[0, 1]^2$

1: re-order input points randomly: p_1, p_2, \ldots, p_n

2:
$$\sigma_{\min} \leftarrow \sigma(p_1, p_2); i \leftarrow 3$$

- 3: while i < n + 1 do
- 4: while $N_{\sigma_{\min}}(p_i) \cap \{p_1, \dots, p_{i-1}\} = \emptyset$ do

5:
$$i \leftarrow i+1$$

- 6: end while
- 7: $p_j \leftarrow \text{closest point in } \{p_1, \ldots, p_{i-1}\} \text{ to } p_i$
- 8: $\sigma_{\min} \leftarrow \sigma(p_i, p_j)$
- 9: $i \leftarrow i + 1$
- 10: end while

where $\mathrm{N}_{\sigma_{\min}}({\it p})$ denotes the σ_{\min} -neighbourhood of ${\it p}$

A randomized incremental approach in \Re^2

The algorithm proceeds in a sequence of *stages* during which the *stage invariant* $N_{\sigma_{\min}}(p_i) \cap \{p_1, \ldots, p_{i-1}\} = \emptyset$ holds.

Between stages we update σ_{\min} by computing $p_j \leftarrow \text{closest point in } \{p_1, \dots, p_{i-1}\}$ to p_i

The cost depends on

- the cost of testing the stage invariant
- the number and cost of stage transitions

Testing the stage invariant

- divide space $[0,1]^2$ into cells of side length $\sigma_{\min}/2$
- ▶ point *p* belongs to cell(*p*) = $\left(\lfloor \frac{p.x}{\sigma_{\min}/2} \rfloor, \lfloor \frac{p.y}{\sigma_{\min}/2} \rfloor\right)$
- ▶ by construction no cell contains more than one point among {p₁,..., p_{i-1}}
- ► stage invariant fails if point p_i has a point among {p₁,..., p_{i-1}} in the neighbourhood of cell(p_i)

Cost of stage transitions

- ▶ when σ_{min} is updated need to rebuild the neighbourhood search structure
- cost is proportional to *i* if we rebuild on *i*-th insertion recall implicit initialization
- ▶ how many stages do we expect? ⊖(lg n)

Total expected cost

- ▶ find operations: O(n) (only look in O(1) cells per point)
- distance calculations: O(n) (only compute distance with O(1) neighbours)
- rebuild operations: O(s), where s is the number of stages
- ▶ insert operations: n + ∑_{1≤i≤n}(iX_i), where X_i = 1 if the *i*-th insert leads to a closest pair update (and X_i = 0 otherwise).

So the total expected cost is O(n).

See Kleinberg&Tardos (Section 13.7) for full details...

Next time...

Dictionaries with non-uniform access patterns

- fixed (known) access frequencies
- unknown/changing access frequencies