
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 5

Department of Computer Science
University of British Columbia

January 20, 2015

1 / 17

Announcements

Assignments...

I Asst2....(due next Thursday)

I remark on email consultation

Readings...

I material on x-fast and y-fast tries [on line]

I material on hashing [Kleinberg, 13.6; Cormen+, chap 11;
Erickson, chapt 12]

I material on closest-pair problem [Kleinberg]

2 / 17

Looking ahead...

Our goal, in the next few lectures is to understand how we might
circumvent this lower bound, by stepping outside the abstract
comparison-based model. We will consider:

I exploiting assumptions about the structure/size of the key
space U

I exploiting assumptions about the distribution of keys in S

I exploiting assumptions about the pattern of successive queries

I (if time permits) other issues: randomization, error tolerance...

3 / 17

Last class...

Continue exploiting assumptions about the structure/size of the
key space U

I inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1} (cont.)

I simple augmentation of direct access tables to facilitate
predecessor/successor queries

I using a tree-directory with marked nodes; simple optimizations

I finding the predecessor and successor keys using auxiliary
structures (x-fast tries)

I perform binary search on access paths to find lowest marked
ancestor

I handling updates efficiently (y-fast tries)
I key ideas: (i) partition keys in S into subsets of size about

lgm, (ii) represent each subset as a standard balanced binary
search tree, and (iii) store one representative from each subset
in an x-fast trie.

4 / 17

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

But...what about the space requirements?!

5 / 17

Today...

Stepping away from the most general (comparison-based)
dictionary model...different possibilities

I inputs are drawn from a restricted universe
U = {0, 1, . . . u − 1} (cont.)

I overcoming space concerns with previous structures
I hashing (the role of randomization)
I universal hashing
I perfect hashing

6 / 17

Inputs are drawn from a restricted universe
U = {0, 1, . . . u − 1}

But...what about the space requirements!

I How can we exploit direct access but reduce space?

I build hash tables!

I What do we give up?

I essentially nothing...

7 / 17

Hashing review

Basic definitions

I key universe U = {0, 1, . . . u − 1}
I set S ⊂ U of size |S | = n

I map keys in S to a table T [0 : m − 1], with hash function
h : U → {0, 1, . . . ,m − 1}

Resolving collisions (since u >> m)

I chaining

I open addressing

Why does it work?

I randomization!

8 / 17

On randomness in the design and analysis of hashing

Sources of (assumed) randomness

I Assume randomness resides in the set S ; elements chosen at
random from U

I all sets S of size n are equally likely
I it suffices to choose h to be any uniform mapping (u/m

elements of U map to each index in {0, . . . ,m − 1})
I Assume h behaves like a random mapping

I appears “patternless”
I good behaviour (few collisions) may be supported empirically
I problem: every fixed mapping behaves poorly on some sets

I Desired property: simple uniform hashing assumption
I If x 6= y then Pr[h(x) = h(y)] = 1/m

9 / 17

On randomness in the design and analysis of hashing

Sources of (assumed) randomness (cont.)

I Choose h randomly from the set of all mu possible hash
functions

I all mappings are equally likely
I problem: how do we describe h?
I essentially the only way is to describe its value on all inputs

explicitly (Θ(u lgm) bits)

I Choose h randomly from some smaller universal set H of hash
functions

I H is universal if for all x , y ∈ U ,
|{h ∈ H s.t. h(x) = h(y)}| ≤ |H|/m

I note: this is essentially the best we could hope for (by
counting)

I note: use of randomization here is like quicksort and the hiring
algorithm: random choice makes all inputs behave the same
(in expectation); adversary cannot choose a bad input.

10 / 17

Properties of universal families of hash functions

Suppose h is chosen uniformly at random from a universal family
H. Then, with expectation (over the choice of h), but independent
of the choice of S :

I simple uniform hashing assumption is satisfied

I E [|{x ∈ (S \ k) s.t. h(x) = h(k)}|] ≤ n/m

11 / 17

Properties of universal families of hash functions

Suppose h is chosen uniformly at random from a universal family
H. Then, with expectation (over the choice of h), but independent
of the choice of S :

I Elements of S are evenly spread, in expectation

I expected cost of insert/delete/member is O(1 + n/m)
I Note: the expected length of the longest collision list when

m = n is Θ(lg n/ lg lg n), so worst case search is not that much
better than a binary search tree!

12 / 17

Properties of universal families of hash functions

Expected total number of collisions is
(n
2

)
/m

I So, if we choose m = n2 then with probability ≥ 1/2 there
will be no collisions: near-perfect hashing

I Furthermore, if we choose m = n, the expected total number
of collisions is Θ(n)

I So if ni items map to T [i], it follows that E [
∑

i n
2
i] = O(n).

13 / 17

construction of perfect hash functions

A two-level hash scheme:

I level 1: Use universal hashing with table size m equal to n
(the size of S)

I Suppose ni elements map to T [i]
I with O(1) expected trials we can guarantee that∑

i n
2
i = O(n); (recall E [

∑
i n

2
i] = O(n))

I level 2: resolve first level collisions by using a (near-perfect)
secondary hash table (of size n2i) associated with table slot
T [i]

I each secondary table is formed with O(1) expected trials
I total space for secondary tables is O(n)

14 / 17

construction of perfect hash functions (cont.)

A dynamic two-level hash scheme:

I how can we deal with insertions/deletions?
I design for expansion

I make first-level and second-level tables twice as large as we
need

I rebuild when n doubles, or desired properties no longer hold
I amortize cost of expansion

15 / 17

Properties of universal families of hash functions

Compact universal families H exist and are efficient to construct.

I Kleinberg&Tardos (section 13.6) describe one construction
based on modular arithmetic

16 / 17

Next time...

Compact universal families H exist and are efficient to construct

I Kleinberg&Tardos (section 13.6) describe one construction
based on modular arithmetic

Applications of universal hashing (cont.)

I finding the closest pair of points in a point set:
Kleinberg&Tardos (section 13.7)

Other geometric (higher-dimensional) search problems

I two-dimensional dictionaries?

17 / 17

