
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 4

Department of Computer Science
University of British Columbia

January 15, 2015

1 / 14

Announcements

Assignments...

I Asst1... due today

I Asst2....out (due next Thursday)

Readings...

I review CS320 (and earlier) notes, particularly material on
ranking and selection as well as basic data structures: know
where you can find what you may need to revisit

I basic material on dictionaries: [Cormen, Chapt. 11-15]

I material on treaps [EricksonNotes, Chapt 10]

I material on x-fast and y-fast tries [on line]

I material on hashing [Kleinberg, 13.6; Erickson, chapt 12]

2 / 14

Last class...

Begin unit on issues related to construction, search and application
of dictionaries

I brief review of basic definitions concerning dictionary
structures

I recall that the worst-case cost of search(S , x) is O(lg |S |)
comparisons, even in a dynamic setting.

I another randomized dictionary structure: treaps
I expected running time of all basic operations is O(lg n) for an

n-node treap

I recall that the cost of search(S , x) is Ω(lg |S |), on a
comparison-based model

I information theoretic (leaf-counting) argument

3 / 14

Looking ahead...

Our goal, in the next few lectures is to understand how we might
circumvent this lower bound, by stepping outside the abstract
comparison-based model. We will consider:

I exploiting assumptions about the structure/size of the key
space U

I exploiting assumptions about the distribution of keys in S

I exploiting assumptions about the pattern of successive queries

I (if time permits) other issues: randomization, error tolerance...

4 / 14

Exploiting assumptions about the structure/size of the key
space U

Inputs are drawn from a restricted universe U = {0, 1, . . .m − 1}
I direct access tables...properties and limitations
I fast initialization

I cost is O(|S |)
I but it requires even more space

5 / 14

Today...

Continue exploiting assumptions about the structure/size of the
key space U

I inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1} (cont.)

I finding the predecessor and successor keys using auxiliary
structures (x-fast tries)

I handling updates efficiently (y-fast tries)

6 / 14

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

Extending the functionality of direct access tables to include
successor & predecessor

I un-augmented direct access tables

I worst-case cost of successor & predecessor is Θ(m)

I augmented direct access tables
I add a tree directory whose internal nodes are marked if their

subtree contains a leaf in S
I insert/delete requires updates to marks along the ancestor path
I can find successor (predecessor) of x 6∈ S by (i) walking up

tree to lowest ancestor of x with a marked right (left) sibling
z , then (ii) walking back down to the leftmost (rightmost)
marked leaf in the subtree rooted at z .

I worst-case cost of insert/delete and successor/predecessor is
Θ(lgm) (the height of the directory)

7 / 14

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

Extending the functionality of direct access tables to include
successor & predecessor

I augmented direct access tables
I add a tree directory whose internal nodes are marked if their

subtree contains a leaf in S

I simple improvements:
(i) explicit pred/succ links at leaf level;
(ii) direct link (at every internal node) to left/rightmost
marked descendent leaf

I find both successor/predecessor of x 6∈ S by (i) walking up tree
to lowest marked ancestor z , (ii) jumping back down to
leftmost or rightmost marked leaf in the subtree rooted at z ,
and (iii) following leaf-level pred/succ links.

I worst-case cost remains Θ(lgm) (the height of the directory)

8 / 14

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

Extending the functionality of direct access tables to include
successor & predecessor

I augmented direct access tables: x-fast trie
I add a tree directory whose internal nodes are marked if their

subtree contains a leaf in S with (i) explicit pred/succ links at
leaf level; (ii) direct link to left/rightmost marked child

I instead of walking up tree from x to its lowest marked ancestor
z , find z by binary search of the ancestors of x .

I cost (of predecessor and successor)is reduced to O(lg lgm)
I however, cost of insert/delete remains Θ(lgm).

9 / 14

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

How do you do binary search on a path in a tree?
I represent the tree implicitly, like an implicit heap with parent

pointers replaced by indexing
I the parent of node with index i is the node with index bi/2c
I the j-th ancestor of the node with index i is the node with

index bi/2jc

10 / 14

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

Extending the functionality of direct access tables to include
successor & predecessor, as well as fast updates

I augmented direct access tables: y -fast tries

I key ideas: (i) partition keys in S into subsets of size about
lgm, (ii) represent each subset as a standard balanced binary
search tree, and (iii) store one representative from each subset
in an x-fast trie.

11 / 14

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

Extending the functionality of direct access tables to include
successor & predecessor, as well as fast updates

I augmented direct access tables: y -fast tries
I successor/predecessor is more complicated: it involves search

in the x-fast tree to find the closest representative, followed by
search in O(1) of the subtrees to find the true
successor/predecessor. But the cost remains O(lg lgm).

I insert/delete involves (i) finding the correct partition (using
successor/predecessor) and (ii) updating the representation of
that partition. Only rarely (when partitions become too large
or too small, or the representtive no longer ”represents”) is it
necessary to add or delete partition representatives in the
x-fast trie. So the amortized cost of insert/delete is O(lg lgm).

12 / 14

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

But...what about the space requirements!

13 / 14

Next time...

Stepping away from the most general (comparison-based)
dictionary model...different possibilities

I inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1} (cont.)

I overcoming space concerns with previous structures
I hashing (the role of randomization)
I universal hashing
I perfect hashing

14 / 14

