
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 3

Department of Computer Science
University of British Columbia

January 13, 2015

1 / 17

Announcements

Assignments...

I Asst1... due Thursday Questions? Clarifications?

Readings...

I review CS320 (and earlier) notes, particularly material on
ranking and selection as well as basic data structures: know
where you can find what you may need to revisit

I basic material on dictionaries: [Cormen, Chapt. 11-15]

I material on treaps [EricksonNotes, Chapt 10]

I material on x-fast and y-fast tries [on line]

I material on hashing [Kleinberg, 13.6; Erickson, chapt 12]

2 / 17

Last class...
Continue case study on finding extrema (reviewing basic issues &
previewing others)

I taking the cost of other operations/resources into account

I auxiliary space in finding the max and second largest;
streaming algorithms; time-space tradeoffs

I update costs in finding the maximum (the iterative and on-line
hiring problems); randomized algorithms

I finding extrema in other computation models

I parallel algorithms
I distributed algorithms; communication complexity

I finding extrema in more restricted or more general input
domains

I inputs are drawn from U = {0, 1, . . .m − 1}
I inputs are specified implicitly; linear programming
I inputs are points in two (or higher) dimensions; computational

geometry

3 / 17

Today...

Begin unit on issues related to construction, search and application
of dictionaries

I brief review of basic definitions and results concerning
dictionary structures

I another randomized dictionary structure: treaps
I stepping away from the most general (comparison-based)

model...different possibilities
I inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

I direct access tables...properties and limitations
I fast initialization
I finding the closest key

4 / 17

Issues related to construction, search and application of
dictionaries

Brief review of basic definitions and results concerning dictionary
structures...

I A (static) dictionary is a data structure that represents a finite
set S = {a1, a2, . . . , an} of keys drawn from a universe (or key
space) U , that facilitates membership queries of the form
member(S , x) that return true, if x ∈ S , and false,
otherwise. (More generally, it returns a pointer to an element
of S , to facilitate access to associated information.)

I If U is a metric space (with distance function d(·, ·)) then the
function closest(S , x) returns a key a in S that minimizes
d(a, x). Depending on context, the function search(S , x)
could be interpreted as either member(S , x) or closest(S , x).

5 / 17

Issues related to construction, search and application of
dictionaries

Brief review of basic definitions and results concerning dictionary
structures...

I If U admits a total ordering, typically denoted ≤, then it is
natural to include the additional operations max(S), min(S),
successor(S , x), and predecessor(S , x) (with the natural
interpretations).

I If in addition the dictionary structure services the operations
insert(S , x) and delete(S , x), the structure is said to be
dynamic.

6 / 17

Issues related to construction, search and application of
dictionaries

Brief review of basic definitions and results concerning dictionary
structures...

I Recall that the worst-case cost of search(S , x) is O(lg |S |)
comparisons, even in a dynamic setting.

I exhibited by a variety of balanced binary search tree
structures: AVL trees, red-black trees, B-trees...

I exhibited in expected case: skip lists

7 / 17

Treaps: another randomized implementation of dictionaries

A treap is a binary tree T each node of which has both a search
key and a (distinct) priority. T is simultaneously:

I A binary search tree with respect to the search keys; and

I a min-heap with respect to the priorities

Note that

I every subtree of a treap is a treap

I a treap is completely determined by the keys and priorities

I treaps were first introduced (as Cartesian trees) by McCreight
[C.ACM 1980] and later in their randomized form by Seidel
and Aragon [Algorithmica, 1996]

8 / 17

Treaps: another randomized implementation of dictionaries

Treaps support all of the following operations in time proportional
to the depth of some node in the structure:

I search
I standard BST search

I insert and delete
I insert: (unsuccessful) search followed by upward rotations to

heapify
I delete: replace priority by ∞, heapify, and prune

I split and join
I split: insert a splitting key with priority −∞, and extra the two

subtrees of this (new) root
I join: combine with an artificial root (with priority −∞), then

delete root

9 / 17

Tree rotation restructuring primitive

Rotation of edge (x , y)

y

x

A B

C

x

y
A

B C

I Preserves in-order of nodes

I reduces depth of child node by 1

10 / 17

Treaps: another randomized implementation of dictionaries

Treaps are particularly interesting when the priorities associated
with nodes are chosen uniformly at random from some continuous
domain (like [0, 1)). In this case the expected depth of any node in
an n-node treap T is O(lg n), and so the expected running time of
all of the operations is also O(lg n).
The critical observation is that, for all i < k :

I the probability that node i is an ancestor of node k is exactly
1

k−i+1 ; and

I the probability that node k is an ancestor of node i is exactly
1

k−i+1 .

11 / 17

Treaps: another randomized implementation of dictionaries

Given this, we compute the expected depth of a node j by
summing, over all i < j and all k > j , the probability that node i
(or k) is an ancestor of node j :∑

i<j

1

j − i + 1
+
∑
k>j

1

k − j + 1

which is
Hj − 1 + Hn−j+1 − 1 < 2 ln n − 2.

12 / 17

Treaps: another randomized implementation of dictionaries

Question: What is another name for the algorithm sorts n keys as
follows: (i) associate a random priority with each key;
(ii) build a treap on the resulting set, by successive insertions
(iii) output the keys of T by doing an in-order traversal

13 / 17

Issues related to construction, search and application of
dictionaries

Returning to our review of basic results concerning dictionary
structures...

I Recall that the cost of search(S , x) is Ω(lg |S |), on a
comparison-based model

I Our goal, in the next few lectures is to understand how we
might circumvent this lower bound, by stepping outside the
abstract comparison-based model. We will consider:

I exploiting assumptions about the structure/size of the key
space U

I exploiting assumptions about the distribution of keys in S
I exploiting assumptions about the pattern of successive queries
I other issues: randomization, error tolerance...

14 / 17

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

I direct access tables

I represent set S as a characteristic vector (bit array)
A[0,m − 1], where A[i] = i , if i ∈ S , and A[i] = 0, otherwise.

I insert, delete and member operations all have cost O(1)!
I What’s not to like?

I initialization cost
I successor & predecessor cost
I space requirement

15 / 17

Inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1}

I direct access tables

I lazy initialization
I cost is O(|S |)
I but it requires even more space

I extending functionality to include successor & predecessor
I un-augmented direct access tables
I augmented direct access tables

16 / 17

Next time...

Continue unit on issues related to construction, search and
application of dictionaries

I stepping away from the most general (comparison-based)
model...different possibilities

I inputs are drawn from a restricted universe
U = {0, 1, . . .m − 1} (cont.)

I finding the closest key using auxiliary structures (x-fast tries)
I handling updates efficiently (y-fast tries)
I space considerations; hashing (more randomization)

17 / 17

