
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 2

Department of Computer Science
University of British Columbia

January 8, 2015

1 / 15



Announcements

General

I Office and TA consultation hours in effect as of today

Assignments...

I Asst1 out ... due January 15

I read over assignments early...well before you plan to work on
them

2 / 15



Announcements

Readings...

I check the CS 420 homepage:
http://people.cs.ubc.ca/~kirk/cs420/

I go carefully through the General Information Handout
I policy on assignments: late policy, 25% rules, collaboration,

acknowledgements

I review CS320 notes, particularly material on binary search and
basic data structures: know where you can find what you may
need to revisit

I read the essay:
The Algorithm: Idiom of Modern Science, by Bernard Chazelle
http://www.cs.princeton.edu/~chazelle/pubs/algorithm.html

for thoughtful (and amusing) motivation for studying
algorithms.

3 / 15

~kirk
~chazelle


Last class...
Administration

I quick overview of course

I highlights of General Information Handout

Started a case study (reviewing basic issues & previewing others)
I finding extrema of a set of n elements (and related problems)

I find the maximum
I (several) algorithms using n − 1 comparisons; iterative,

recursive, tournament
I a lower bound of n − 1 comparisons: need to identify n − 1

non-maximums

I find the minimum (by reduction to maximum)
I other problems reducible to max-finding

I find both the maximum and the minimum d3n/2e − 2
I find the largest and second largest n + dlg ne − 2
I find the first, second and third largest ???
I find the median worst case is between 2n and 3n; expected

case (using a randomized algorithm) is at most 1.5n

4 / 15



Important issues/ideas...

Started a case study (reviewing basic issues & previewing others)
I algorithm design

I same algorithm has different expressions: iterative, recursive...
I exploit real-world solutions for algorithmic ideas: tournaments
I exploit non-trivial data structures: heaps
I reductions...algorithm re-use
I randomization

I algorithm analysis
I worst-case, average-case, expected-case analysis
I lower bounds...intrinsic cost of underlying problem; optimality

5 / 15



Today...
Continue case study on finding extrema (reviewing basic issues &
previewing others)

I taking the cost of other operations/resources into account

I auxiliary space in finding the max and second largest;
streaming algorithms; time-space tradeoffs

I update costs in finding the maximum (the iterative and on-line
hiring problems); randomized algorithms

I finding extrema in other computation models

I parallel algorithms
I distributed algorithms; communication complexity

I finding extrema in more restricted or more general input
domains

I inputs are drawn from U = {0, 1, . . .m − 1}
I inputs are specified implicitly; linear programming
I inputs are points in two (or higher) dimensions; computational

geometry

6 / 15



Next time...

building and searching dictionaries

7 / 15



Continue case study...

taking the cost of other operations/resources into account

I auxiliary space in finding the max and second largest;
streaming algorithms; time-space tradeoffs

I update costs in finding the maximum (the iterative hiring
problems); randomized algorithms

8 / 15



Hiring Problem

I update costs in finding the maximum (the hiring problem)

Claim. The average (over all input permutations) of the
number of max-updates in the incremental max-finding
algorithm is Θ(log n).
Proof. For a random input permutation, the probability that
the the i-th input leads to a max-update (new hire) is 1/i . So
the expected number of updates is

∑n
i=1 1/i which is

ln n + O(1).

Corollary. The expected number of updates in the randomized
incremental max-finding algorithm is Θ(log n).

9 / 15



Continue case study...

finding extrema in other computation models

I parallel algorithms

I distributed algorithms; communication complexity

10 / 15



Maximum finding / Leader Election on a ring of
processors...

How many messages are needed?

I O(n2) using naive algorithm
I Θ(n lg n) are sufficient (and necessary)

I Idea: candidate elimination
I each round eliminates all but local maxima
I each round eliminates half of the remaining candidates

11 / 15



Continue case study...

finding extrema in more general input domains

I inputs are specified implicitly; linear programming

I inputs are points in two (or higher) dimensions; computational
geometry

12 / 15



Convex hull computation..

reduction to sorting...Graham’s algorithm

I sort points by x-coordinate

I build upper and lower hulls incrementally (O(n))

13 / 15



Continue case study...

finding extrema in more restricted input domains

I inputs are drawn from the restricted universe
U = {0, 1, . . .m − 1}

14 / 15



Finding the maximum with inputs drawn from
U = {0, 1, . . .m − 1}

Claim. The maximum input can be found using only unary
predicate evaluations (eg. x7 ≥ 13?).
Proof. n-fold binary search suffices to determine the exact value of
all n inputs with O(n lgm) unary predicate evaluations.

Remark 1. It is easy to argue that Θ(n + lgm) unary predicate
evaluations are required, and in fact it can be shown that
O(n + lgm) also suffice.

Remark 2. This has an interesting interpretation as a problem in
distributed computing (communication complexity)

15 / 15


