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Announcements

Assignments...

I Asst6/7...(due March 19)

Midterm III...

I Q/A session...March 24; 5:30-7:00; DMPT 110

I Exam...March 25; 5:30-7:00; DMPT 110

I ...on all course material up to and including March 19 lecture
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Announcements (cont.)

Readings...

I matchings and network flows [Kleinberg&Tardos, Chapt. 7],
[Cormen et al., Chapt. 26], [Dasgupta et al., Chapter 7]

I reductions and NP-hardness [Kleinberg&Tardos, Chapt. 8,
11], [Cormen et al., Chapt. 34,35]
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Last classes...

Matchings and Network Flows

I network flows
I definitions
I relationship with bipartite matchings
I duality
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Last classes...

Reductions and relative hardness of problems

I reductions...treated more formally

I overview of problems with efficient algorithms
... and related problems with no known efficient algorithm

I the complexity classes P and NP

I NP-hardness and NP-completeness
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Last classes...

Reductions and relative hardness of problems

I some examples of reductions establishing NP-hardness and
NP-completeness

I HC ≤©PTSP
I Clique ≤©PLargestCommonSubgraph
I VC ≤©PDominatingSet
I 3-SAT ≤©PVC
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A review of some graph problems

left column

-spanning trees
min cost
maximum width

-path problems
min-cost
min colour-transitions
Eulerian path

-graph colouring
2-colouring (bipartite)
4-colouring (planar graph)
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A review of some graph problems

left column

-spanning trees
min-cost
maximum width

-path problems
min-cost
min colour-transitions
Eulerian path

-graph colouring
2-colouring (bipartite)
4-colouring (planar graph)

right column

bounded-degree MST
bounded-diameter MST

longest (simple) path
min total colours
Hamiltonian path

3-colourability
3-colouring (planar graph)
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A review of some graph problems

left column

-matchings etc.
max size (bipartite)
vertex cover (bipartite)
general (non-bipartite)
b-matchings

-network flows etc.
max value
integral/general capacities
vertex capacities
minimum cut
edge/vertex-disjoint paths
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A review of some graph problems

left column

-matchings etc.
max size (bipartite)
vertex cover (bipartite)
general (non-bipartite)
b-matchings

-network flows etc.
max value
integral/general capacities
vertex capacities
minimum cut
edge/vertex-disjoint paths

right column

3-d matching (triangle cover)
maximum independent set
vertex cover (tripartite)

flows with edge costs
undirected flows with lower

bounds
vertex-disjoint connecting

paths
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A review of some graph problems

All of the left column problems have efficient solutions: their
decision versions belong to the complexity class P, defined to be
the family of decision problems (languages) that can be decided
(recognized) in time bounded by some polynomial in the input size.

Why are we interested in polynomial time?

I generous definition of tractable

I often equates to tractable in practice

I closure properties (composition)

I invariance under natural computation models
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A review of some graph problems

None of the right column problems are known to have efficient
solutions.

Nevertheless, their decision versions all admit efficient certification;
i.e. a short proof/certificate that the answer is YES. They all
belong to the complexity class NP is defined to be the family of
decision problems (languages) whose membership can be
certified/verified in time bounded by some polynomial in the input
size.

NP stands for non-deterministic polynomial-time: certification
corresponds to acceptance by a non-deterministic machine.
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Deterministic language acceptance

α YES/NO
ML

Machine ML accepts L if:
α ∈ L if and only if ML outputs YES on input α
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Non-deterministic language acceptance

α YES/NO

β

ML

Machine ML non-deterministically accepts L if:
α ∈ L if and only if there exists a string β such that ML outputs
YES on input (α, β).
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The complexity classes P and NP

P denotes the set of languages that can be (deterministically)
accepted in time bounded by some polynomial in the input length.
NP denotes the set of languages that can be
(non-deterministically) accepted in time bounded by some
polynomial in the input length.
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The complexity classes P and NP

It turns out that all of the right column problems are as hard as
any problem in NP, up to polynomial factors, which is abbreviated
NP-hard. Since they are also in NP they belong to the class
NP-complete.

NP-complete problems have the property that they have
polynomial-time solutions (i.e. they belong to P) if and only if
P=NP, i.e. all problems in NP have polynomial-time solutions.
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The complexity classes P and NP

How could we possibly show that some problem X is NP-hard? We
don’t even know all of the problems in NP!

I it is straightforward once we know some NP-hard problem A:
simply demonstrate A ≤©t(n)X, where t(n) is some polynomial
in n. (Hereafter, we write A ≤©PX )

I the real breakthrough was the demonstration of a first
NP-hard problem
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Today...

Reductions and relative hardness of problems

I The Cook-Levin theorem: establishing the first NP-hard
problem

I more examples of reductions establishing NP-hardness and
NP-completeness

18 / 33



Review of Propositional Logic...

Boolean Expressions
A Boolean expression over the set of Boolean variables
{x1, x2, . . . , xn} is defined (recursively) as:

1. a variable

2. the negation of a Boolean expression

3. the disjunction (or) of two Boolean expressions

4. the conjunction (and) of two logical expressions

A Boolean expression is satisfiable if there is an assignment of truth
values to its variables such the the expression evaluates to true.
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Review of Propositional Logic...

Conjunctive Normal Form
By applying DeMorgan’s distributive laws, any Boolean expression
can be converted to an equivalent expression E in conjunctive
normal form (CNF):

E ≡ D1 ∧ D2 ∧ . . . ∧ Dt

a conjunction of disjuncts, where each disjunct Di has the form

Li ,1 ∨ Li ,2 ∨ . . . ∨ Li ,s

a disjunction of literals, where each literal Li ,j is either a variable xj
or the negation of a variable x i .
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Review of Propositional Logic...

Conjunctive Normal Form
A formula in k-CNF has the property that each of its disjuncts has
at most k literals. For example:

(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x4) ∧ (x1 ∨ x4)

is a Boolean expression in 2-CNF.
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Review of Propositional Logic...

Satisfiability
The language SAT is defined as the set of all satisfiable Boolean
expressions. Its restriction k-SAT is the set of all satisfiable
Boolean expressions in k-CNF.
Note:

I 2-SAT is in P , since 2-SAT ≤©Pdigraph connectivity

I k-SAT ≤©PSAT and SAT ≤©P3-SAT

I SAT is in NP
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Cook’s Theorem...

Theorem: SAT is also NP-hard
Literally ... for every language L in NP, L ≤©PSAT

How could this be proved?

I A language L is in NP iff there is a non-deterministic machine
M that accepts strings α ∈ L in |α|k time, for some fixed k

I So, it suffices to show how to construct a Boolean expression
E (α) that says “there exists a string β such that the pair
(α, β) is accepted by M in at most |α|k steps”.
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The Vertex Cover Problem

Recall that the VERTEX-COVER problem takes as input a graph
G and an integer k and asks if G has a vertex cover of size k , i.e.
a subset Vc ⊆ V such that every edge in E has at least one
endpoint in Vc .

Note

I For bipartite graphs the vertex cover problem is in P

I In general VERTEX-COVER is in NP
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The Vertex Cover Problem

In fact...
Theorem: VERTEX-COVER is NP-complete.

Proof:
We show that 3-SAT ≤©PVERTEX-COVER
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Today...

Building the NP-hardness reduction tree

I overview of reductions

I some selected examples

I 3-SAT ≤©P3-D-MATCHING
I 3-D-MATCHING ≤©PSUBSET-SUM
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Overview of Reductions

NP

SAT

L

3-SAT

GRAPH-3-COLORABILITY

3-D-MATCHING

VERTEX-COVER

SUBSET-SUM

3-COLORABILITY
PLANAR-GRAPH-

0-1-KNAPSACK

HAMILTONIAN
CIRCUIT

DIAMETER ≤ 4
MST

MST
DEGREE ≤ 2
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Some more examples

I 3-SAT ≤©P3-D-MATCHING

I 3-D-MATCHING ≤©PSUBSET-SUM
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