
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 17

Department of Computer Science
University of British Columbia

March 10, 2015

1 / 26



Announcements

Guest Lecturer... Patrice Bellville
Assignments...

I Asst6/7...(due March 19)

Midterm III...

I Q/A session...March 24; 5:30-7:00; DMPT 110

I Exam...March 25; 5:30-7:00; DMPT 110

I ...on all course material up to and including March 19 lecture

2 / 26



Announcements (cont.)

Readings...

I matchings and network flows [Kleinberg&Tardos, Chapt. 7],
[Cormen et al., Chapt. 26], [Dasgupta et al., Chapter 7]

I reductions and NP-hardness [Kleinberg&Tardos, Chapt. 8,
11], [Cormen et al., Chapt. 34,35]

3 / 26



Last day...

Matchings and Network Flows

I relationship with bipartite matchings (cont.)

I two applications

Reductions and relative hardness of problems

I reductions
I definitions
I examples of reductions encountered in course
I role(s) in establishing relative hardness

4 / 26



Today...

Reductions and relative hardness of problems

I reductions...treated more formally

I overview of problems with efficient algorithms
... and related problems with no known efficient algorithm

I the complexity classes P and NP

I NP-hardness and NP-completeness

5 / 26



Reductions and relative hardness of problems

We write A ≤© B to denote the fact that problem A is reducible to
problem B. Informally, this means

1. a subroutine for solving problem B can be used as a black box
in solving problem A

2. instances of problem A can be transformed to instances of
problem B in such a way that a solution to the latter can be
transformed back into a solution of the former

6 / 26



Reductions and relative hardness of problems

We have seen many examples throughout the course...

I element-distinctness ≤© closest-pair ≤© sorting

I transitive-closure ≤© Boolean-matrix-product

I all-pairs-shortest-paths-with-arbitrary-weights
≤© all-pairs-shortest-paths-with-non-negative-weights

I edit-distance (sequence-alignment)
≤© single-source-shortest-path

7 / 26



Reductions and relative hardness of problems

We have seen many examples throughout the course...

I bipartite-matching ≤© bipartite-vertex-cover
≤© bipartite-matching

I bipartite-matching ≤© unit-capacitated-network-flow
≤© bipartite-matching

I integer-capacitated-network-flow ≤© unit-capacitated-network
flow

8 / 26



Reductions and relative hardness of problems

and in homework assignments...

I maximum-width s, t-path ≤© maximum-weight-spanning-tree

I generalized network-flow ≤© standard network-flow

I minimum-colour-transition-path ≤© min-cost-shortest-path

I vertex-cover ≤© minimum-colour-path

9 / 26



Reductions and relative hardness of problems

Often very general problems, such as sorting, min-cost-paths,
network-flow or linear-programming, serve as the target of
reductions.

Other times we are interested in reducing a general case to a
restricted case, or demonstrating reductions that go in both
directions.

10 / 26



Reductions and relative hardness of problems

Often very general problems, such as sorting, min-cost-paths,
network-flow or linear-programming, serve as the target of
reductions.

Other times we are interested in reducing a general case to a
restricted case, or demonstrating reductions that go in both
directions.

10 / 26



Reductions and relative hardness of problems

In the event that the reduction overhead is low, A ≤© B implies:

I solving problem A is not much harder than solving problem B
(upper bounds on the cost of solving B translate to upper
bounds on the cost of solving A)

I solving problem B is not much easier than solving problem A
(lower bounds on the cost of solving A translate to lower
bounds on the cost of solving B)

11 / 26



Reductions and relative hardness of problems

In the event that the reduction overhead is low, A ≤© B implies:

I solving problem A is not much harder than solving problem B
(upper bounds on the cost of solving B translate to upper
bounds on the cost of solving A)

I solving problem B is not much easier than solving problem A
(lower bounds on the cost of solving A translate to lower
bounds on the cost of solving B)

11 / 26



Reductions and relative hardness of problems

In the event that the reduction overhead is low, A ≤© B implies:

I solving problem A is not much harder than solving problem B
(upper bounds on the cost of solving B translate to upper
bounds on the cost of solving A)

I solving problem B is not much easier than solving problem A
(lower bounds on the cost of solving A translate to lower
bounds on the cost of solving B)

11 / 26



Reductions and relative hardness of problems

In order to be more precise about “relative hardness” it helps to
take note of the actual cost of the reduction itself. We write
A ≤©t(n)B to denote the fact that the reduction from A to B can
be carried out in t(n) time, for instances of size n.

12 / 26



Reductions and relative hardness of problems

When using reductions to establish lower bounds, it is useful to
focus on decision versions of problems rather than optimization
versions: that is, determine if a solution of at least some value
exists (yes/no) as opposed to determining the solution with the
largest/best value.

I there is a long history of using language recognition problems
as complexity benchmarks

I by focusing on decision problems, we avoid complexity that
arises simply from describing the optimal solution

I optimization problems can often be expressed as a sequence of
decision problems

13 / 26



Reduction A ≤© B between decision problems

decision alg.
for B

T
α β

decision alg. for A

14 / 26



A review of some graph problems

left column

-spanning trees
min cost
maximum width

-path problems
min-cost
min colour-transitions
Eulerian path

-graph colouring
2-colouring (bipartite)
4-colouring (planar graph)

15 / 26



A review of some graph problems

left column

-spanning trees
min cost
maximum width

-path problems
min-cost
min colour-transitions
Eulerian path

-graph colouring
2-colouring (bipartite)
4-colouring (planar graph)

15 / 26



A review of some graph problems

left column

-spanning trees
min cost
maximum width

-path problems
min-cost
min colour-transitions
Eulerian path

-graph colouring
2-colouring (bipartite)
4-colouring (planar graph)

15 / 26



A review of some graph problems

left column

-spanning trees
min cost
maximum width

-path problems
min-cost
min colour-transitions
Eulerian path

-graph colouring
2-colouring (bipartite)
4-colouring (planar graph)

15 / 26



A review of some graph problems

left column

-spanning trees
min-cost
maximum width

-path problems
min-cost
min colour-transitions
Eulerian path

-graph colouring
2-colouring (bipartite)
4-colouring (planar graph)

right column

bounded-degree MST
bounded-diameter MST

longest (simple) path
min total colours
Hamiltonian path

3-colourability
3-colouring (planar graph)

16 / 26



A review of some graph problems

left column

-matchings etc.
max size (bipartite)
vertex cover (bipartite)
general (non-bipartite)
b-matchings

-network flows etc.
max value
integral/general capacities
vertex capacities
minimum cut
edge/vertex-disjoint paths

17 / 26



A review of some graph problems

left column

-matchings etc.
max size (bipartite)
vertex cover (bipartite)
general (non-bipartite)
b-matchings

-network flows etc.
max value
integral/general capacities
vertex capacities
minimum cut
edge/vertex-disjoint paths

17 / 26



A review of some graph problems

left column

-matchings etc.
max size (bipartite)
vertex cover (bipartite)
general (non-bipartite)
b-matchings

-network flows etc.
max value
integral/general capacities
vertex capacities
minimum cut
edge/vertex-disjoint paths

right column

3-d matching (triangle cover)
maximum independent set
vertex cover (tripartite)

flows with edge costs
undirected flows with lower

bounds
vertex-disjoint connecting

paths

18 / 26



A review of some graph problems

All of the left column problems have efficient solutions: their
decision versions belong to the complexity class P, defined to be
the family of decision problems (languages) that can be decided
(recognized) in time bounded by some polynomial in the input size.

Why are we interested in polynomial time?

I generous definition of tractable

I often equates to tractable in practice

I closure properties (composition)

I invariance under natural computation models

19 / 26



A review of some graph problems

All of the left column problems have efficient solutions: their
decision versions belong to the complexity class P, defined to be
the family of decision problems (languages) that can be decided
(recognized) in time bounded by some polynomial in the input size.

Why are we interested in polynomial time?

I generous definition of tractable

I often equates to tractable in practice

I closure properties (composition)

I invariance under natural computation models

19 / 26



A review of some graph problems

None of the right column problems are known to have efficient
solutions.

Nevertheless, their decision versions all admit efficient certification;
i.e. a short proof/certificate that the answer is YES. They all
belong to the complexity class NP is defined to be the family of
decision problems (languages) whose membership can be
certified/verified in time bounded by some polynomial in the input
size.

NP stands for non-deterministic polynomial-time: certification
corresponds to acceptance by a non-deterministic machine.

20 / 26



A review of some graph problems

None of the right column problems are known to have efficient
solutions.

Nevertheless, their decision versions all admit efficient certification;
i.e. a short proof/certificate that the answer is YES. They all
belong to the complexity class NP is defined to be the family of
decision problems (languages) whose membership can be
certified/verified in time bounded by some polynomial in the input
size.

NP stands for non-deterministic polynomial-time: certification
corresponds to acceptance by a non-deterministic machine.

20 / 26



A review of some graph problems

None of the right column problems are known to have efficient
solutions.

Nevertheless, their decision versions all admit efficient certification;
i.e. a short proof/certificate that the answer is YES. They all
belong to the complexity class NP is defined to be the family of
decision problems (languages) whose membership can be
certified/verified in time bounded by some polynomial in the input
size.

NP stands for non-deterministic polynomial-time: certification
corresponds to acceptance by a non-deterministic machine.

20 / 26



Deterministic language acceptance

α YES/NO
ML

Machine ML accepts L if:
α ∈ L if and only if ML outputs YES on input α

21 / 26



Non-deterministic language acceptance

α YES/NO

β

ML

Machine ML non-deterministically accepts L if:
α ∈ L if and only if there exists a string β such that ML outputs
YES on input (α, β).

22 / 26



The complexity classes P and NP

P denotes the set of languages that can be (deterministically)
accepted in time bounded by some polynomial in the input length.
NP denotes the set of languages that can be
(non-deterministically) accepted in time bounded by some
polynomial in the input length.

Note:

I deterministic acceptance is equivalent to deterministic
decision (P is closed under complement)

I NP is not known to be closed under complement

23 / 26



The complexity classes P and NP

It turns out that all of the right column problems are as hard as
any problem in NP, up to polynomial factors, which is abbreviated
NP-hard. Since they are also in NP they belong to the class
NP-complete.

NP-hard problems have the property that they have
polynomial-time solutions (i.e. they belong to P if and only if
P=NP, i.e. all problems in NP have polynomial-time solutions.

24 / 26



The complexity classes P and NP

How could we possibly show that some problem X is NP-hard? We
don’t even know all of the problems in NP!

I it is straightforward once we know some NP-hard problem A:
simply demonstrate A ≤©t(n)X, where t(n) is some polynomial
in n.

I the real breakthrough was the demonstration of a first
NP-hard problem

25 / 26



The complexity classes P and NP

How could we possibly show that some problem X is NP-hard? We
don’t even know all of the problems in NP!

I it is straightforward once we know some NP-hard problem A:
simply demonstrate A ≤©t(n)X, where t(n) is some polynomial
in n.

I the real breakthrough was the demonstration of a first
NP-hard problem

25 / 26



Coming up...

Reductions and relative hardness of problems

I some examples of reductions establishing NP-hardness and
NP-completeness

I approximation algorithms for hard problems

26 / 26


