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Announcements

Assignments...

I Asst6/7...out today (due March 19)

Midterm III...

I Q/A session...March 24; 5:30-7:00; DMPT 110

I Exam...March 25; 5:30-7:00; DMPT 110

I ...on all course material up to and including March 19 lecture
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Announcements (cont.)

Readings...

I matchings and network flows [Kleinberg&Tardos, Chapt. 7],
[Cormen et al., Chapt. 26], [Dasgupta et al., Chapter 7]

I reductions and NP-hardness [Kleinberg&Tardos, Chapt. 8,
11], [Cormen et al., Chapt. 34,35]
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Last class...

Matchings and Network Flows

I matchings
I definitions
I bounds for bipartite matchings
I duality
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Matchings in Bipartite Graphs

Since |M| ≤ |VL\S |+ |N(S)| holds for all matchings M and all
sets S ⊆ VL, it follows that:

Claim:
max

matchings M
|M| ≤ min

S⊆VL

{|VL\S |+ |N(S)|}

Note: this holds even if edges can be chosen fractionally

5 / 37



Matchings in Bipartite Graphs – Berge’s Theorem

Suppose that M does not admit an augmenting path.

Let SM denote the set of vertices in v ∈ VL such that there exists
an even length alternating path to v from some unsaturated vertex
in VL. Then

1. every vertex v ∈ VL\SM is saturated (otherwise a path of
length 0 exists)

2. every vertex w ∈ N(SM) is saturated (otherwise an
augmenting path to w exists)

3. no edge (v ,w) of M joins VL\SM to N(SM) (otherwise v
should belong to SM)

Thus... |M| ≥ |VL\SM |+ |N(SM)|
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Matchings in Bipartite Graphs

Taken together with the earlier Claim this proves the following:

Theorem[Kőnig 1931]

max
matchings M

|M| = min
S⊆VL

{|VL\S |+ |N(S)|}
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Matchings in Bipartite Graphs

Corollaries

1. There is an efficient algorithm to construct a maximum
matching in a bipartite graph —search for augmenting paths

2. The algorithm is self-certifying —the set SM provides a
certificate of the optimality of M

3. The set VL\S ∪ N(S) is a vertex cover of G . The Theorem
establishes the fact that, in bipartite graphs,

max
matchings M

|M| = min
vertex covers C

{|C |}
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Today...

Matchings and Network Flows

I network flows
I definitions
I relationship with bipartite matchings
I duality
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Coming up...

Reductions and relative hardness of problems

I reductions
I definitions
I role(s) in establishing relative hardness
I examples (review)

I overview of problems with efficient algorithms
... and related problems with no known efficient algorithm

I the complexity classes P and NP

I NP-hardness and NP-completeness
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Network Flows

Definitions
A capacitated network is a directed graph G with

1. two distinguished vertices: s (the source) and t (the sink); and

2. a non-negative number c(e), associated with each edge e,
called the capacity of e

A flow (from s to t) in G is a function f : E → < that satisfies:

1. (capacity constraints) 0 ≤ f (e) ≤ c(e), for all e ∈ E ; and

2. (flow conservation)
∑

e into v f (e) =
∑

e out of v f (e).

The value of flow f , denoted |f |, is defined as:

|f | =
∑

e out of s

f (e)
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Network Flows

The maximum-flow problem
Given a capacitated network G , find a flow from s to t of
maximum value
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Network Flows

The maximum-flow problem
As with matchings we can ask:

1. can we bound the value of the maximum flow by some natural
property of the network?

2. given a flow, how can we improve (augment) it to increase its
value?

3. how will we know when we are done?
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Network Flows and Bipartite Matchings

Maximum bipartite matching can be reduced to maximum flow
Given a bipartite graph G , with vertex bi-partition VL and VR :

1. direct all edges of E from VL to VR and assign each one
capacity 1

2. create a new source vertex s and sink vertex t

3. add an edge with capacity 1 from s to each vertex in VL; and

4. add an edge with capacity 1 from each vertex in VR to t
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Network Flows and Bipartite Matchings
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Network Flows and Bipartite Matchings
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Network Flows and Bipartite Matchings
Maximum flow in integer capacitated networks can be reduced to
maximum flow in unit capacitated networks

replace

1 1

11

3

with
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Network Flows and Bipartite Matchings
Maximum flow in unit capacitated networks can be reduced to
maximum bipartite matching

replace

with

v
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Network Flows and Bipartite Matchings
Maximum flow in unit capacitated networks can be reduced to
maximum bipartite matching

replace

with

v

} d̂(v)
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Network Flows and Bipartite Matchings

Claim The resulting bipartite graph has a matching of size
f +

∑
v d̂(v) if and only if the original network had a flow of value

f .
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Network Flows and Bipartite Matchings
Matching reflects the flow through a vertex

replace

with
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Network Flows and Bipartite Matchings
An example of the full reduction...

s t
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1

1

2
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Network Flows and Bipartite Matchings
An example of the full reduction...
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Network Flows and Bipartite Matchings
An example of the full reduction...

s t
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Network Flows and Bipartite Matchings

A capacitated network...
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Network Flows and Bipartite Matchings

...and a flow
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Network Flows and Bipartite Matchings

The residual flow graph...
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Network Flows and Bipartite Matchings

and associated augmenting path
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Network Flows and Bipartite Matchings

The augmented flow... (note edge-disjoint paths)
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Two Applications...

I resilience of sensor networks

I can the Canucks make the playoffs?
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Reductions and relative hardness of problems

We will write A ≤© B to denote the fact that problem A is
reducible to problem B. Informally, this means

1. a subroutine for solving problem B can be used as a black box
in solving problem A

2. instances of problem A can be transformed to instances of
problem B in such a way that a solution to the latter can be
transformed back into a solution of the former
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Reductions and relative hardness of problems

We have seen many examples throughout the course...

I element-distinctness ≤© closest-pair ≤© sorting

I transitive-closure ≤© Boolean-matrix-product

I all-pairs-shortest-paths-with-arbitrary-weights
≤© all-pairs-shortest-paths-with-non-negative-weights

I edit-distance (sequence-alignment)
≤© single-source-shortest-path
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Reductions and relative hardness of problems

We have seen many examples throughout the course...

I bipartite-matching ≤© bipartite-vertex-cover
≤© bipartite-matching

I bipartite-matching ≤© unit-capacitated-network-flow
≤© bipartite-matching

I integer-capacitated-network-flow ≤© unit-capacitated-network
flow
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Reductions and relative hardness of problems

and in homework assignments...

I minimum-colour-transition-path ≤© min-cost-shortest-path

I vertex-cover ≤© minimum-colour-path

35 / 37



Coming up...

Reductions and relative hardness of problems

I overview of problems with efficient algorithms
... and related problems with no known efficient algorithm

I reductions...treated more formally

I the complexity classes P and NP

I NP-hardness and NP-completeness
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