
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 14

Department of Computer Science
University of British Columbia

February 26, 2015

1 / 31



Announcements
Assignments...

I Sample solutions to Asst 4 (and Midterm I) have been posted

I Asst5...due today

Midterm II...

I Q/A session...next Tuesday (March 03); 5:30-7:00; DMPT
310

I Exam...Wednesday (March 04); 5:30-7:00; DMPT 310

I ...on material up to and including today’s class

Readings...

I minimum-cost path problems [Erickson, Chapt 21, 22;
Cormen+, Chapt 25 26; ...]

I edit-distance [Erickson, Chapt. 5.5, 6; Kleinberg&Tardos,
Chapt. 6.6 & 6.7]

I Goldberg et al,. “Efficient point-to-point shortest path
algorithms”
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Last class...

Min-cost path problems

I all-pairs of endpoints (cont.)
I algorithms for dense graphs, using dynamic programming

I matrix min-sum product approach (generalized Bellman-Ford):
O(n3 lg n)

I relax constraints on intermediate vertices (Floyd-Warshall):
O(n3)

Edit distance problems

I dynamic programming solutions

I reformulation as (single source, single destination) min-cost
path problem
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Today...

Edit distance problems (cont.)

I reformulation as (single source, single destination) min-cost
path problem

I solution by reweighted Dijkstra

Min-cost path problems (cont.)

I Dijkstra modifications for single-source single-destination
problems

I bi-directional Dijkstra
I goal-directed Dijkstra
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Edit distance Problem

dynamic programming solution:

1. Total cost is O(nm)
I each ED-table entry is computed in O(1) time

2. Space can be reduced to O(n + m)
I it suffices to keep only two active columns of ED-table

3. Optimal edit script can be reproduced efficiently
I by divide and conquer
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Edit Distance Matrix
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Edit Distance Graph
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Edit Distance Graph
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Edit Distance Graph
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Edit Distance Graph
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We want to find the min-cost path from v0,0 to vn,m.
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Edit Distance Graph
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We want to find the min-cost path from v0,0 to vn,m.
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Edit Distance Graph

In general, Dijkstra’s algorithm will find the min-cost path (and the
corresponding edit script) in O(|E |+ |V | lg |V |) = O(nm lg(nm))
time.

In the case where we are interested in the minimum length edit
sequence with no mismatches:

I we can assign horizontal and vertical edges a cost of 1

I and diagonal edges a cost of 0 (if xi matches yj), and ∞
otherwise

In this case, any path from vi ,j to vn,m must use at least
|(m − j)− (n − i)| horizontal/vertical segments, its cost must be
at least |m − n + i − j |. Why?
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Edit Distance Graph

So, if we use the function z(vi ,j) = |m − n + i − j | to reweight the
graph, as ĉ(u, v) = c(u, v)− z(u) + z(v):

I horizontal and vertical edges that point towards the diagonal
through vn,m have their cost reduced (by 1) to zero

I horizontal and vertical edges that point away from the
diagonal through vn,m have their cost increased (by 1) to two

I the weight of every diagonal edge is unchanged

I all paths from vi ,j to vn,m have their cost reduced by
|m − n + i − j |
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Edit Distance Graph
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Red edges have cost increased to 2, green edges have cost
decreased to 0.
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Edit Distance Graph

Dijkstra’s algorithm will find vertices at (reweighted) cost
1, 2, . . . , d from v0,0, where the edit-distance D is |m− n|+ d . So,
explored vertices are confined to |m − n|+ d diagonals, each of
length min{n,m}.
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Edit Distance Graph
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Edit Distance Graph
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Single-source single-destination min-cost paths

The example of the edit-distance graph illustrates two important
general modifications of Dijkstra’s algorithm that applies to
single-source single-destination min-cost path problems:

1. bi-directional Dijkstra: run Dijkstra’s algorithm from both the
source and destination, until the wavefronts collide

2. goal-directed Dijkstra: use some estimate, b(v), of the
distance from all intermediate nodes v to the destination t, to
guide the exploration of nodes (using a reweighted graph)

19 / 31



Single-source single-destination min-cost paths

In general, it suffices for the estimate b to satisfy two properties:

1. admissible: b(v) is a lower bound (underestimate) on δ(v , t)

2. consistent: b(u)− b(v) ≤ c(u, v)

If these hold then we can reweight the graph, by
ĉ(u, v) = c(u, v)− b(u) + b(v), and all edge-weights remain
non-negative (by consistency).
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Single-source single-destination min-cost paths

In the reweighted graph Dijkstra’s algorithm always explores the
next unexplored vertex v that minimizes the current d̂-value, which
must equal

δ̂(s, v) = δ(s, v)− b(s) + b(v)

This, of course, is equivalent to choosing v that minimizes
dS [v ] + b(v)
which corresponds to the A∗ heuristic for graph search.
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Single-source single-destination min-cost paths

If we were clairvoyant, we could choose b(v) = δ(v , t). In this
case, all edges on any min-cost path from s to t would have their
weight reduced to zero. So Dijkstra would find one such path in
time proportional to the length of the path.

Without a crystal ball, how can we construct admissible and
consistent path-cost estimates?
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Single-source single-destination search in massive graphs

What if we want to give point-to point driving directions on a large
map?

I use Dijkstra

I use bidirectional Dijkstra
I use goal-directed (bidirectional) Dijkstra (A∗)

I with path estimates based on Euclidean distance
– not very effective in practice

I with path estimates based on landmarks
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Single-source single-destination search in massive graphs

Some figures from a talk by Andrew Goldberg (Microsoft
Research):

http://www.slideshare.net/csclub/andrew-goldberg-an-efficient-
pointtopoint-shortest-path-algorithm
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Landmark based estimates

I Choose a small number of well-spaced vertices (landmarks)
and compute shortest paths from all vertices to all landmarks.

I If δ(v , Li ) denotes the distance from v to landmark Li , then
estimate δ(u, v) by maxi{δ(u, Li )− δ(v , Li )}.

I This estimate
I is guaranteed to be a lower bound on δ(u, v), by the triangle

inequality
I will be reasonably accurate if some landmark aligns well with

the shortest path from u to v .
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Landmark based estimates
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Landmark based estimates
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Landmark based estimates
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Landmark based estimates
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Landmark based estimates
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Coming up...

Min-cost path problems

I issues related to real-world constraints
I robustness (failure tolerance)
I single-source single destination queries

I issues motion planning (continuous path problems)
I paths on terrains
I obstacle avoidance
I curvature constraints
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