
CS 420: Advanced Algorithm Design and Analysis
Spring 2015 – Lecture 13

Department of Computer Science
University of British Columbia

February 24, 2015

1 / 25



Announcements

Assignments...

I Sample solutions to Asst 4 (and Midterm I) have been posted

I Asst5...due Thursday

Midterm II...

I Q/A session...next Tuesday (March 03); 5:30-7:00; DMPT
310

I Exam...Wednesday (March 04); 5:30-7:00; DMPT 310

I ...on material up to and including this Thursday’s class

Readings...

I minimum-cost path problems [Erickson, Chapt 21, 22;
Cormen+, Chapt 25 26; ...]

I edit-distance [Erickson, Chapt. 5.5, 6]

2 / 25



Last classes...

Graph algorithms

I path existence (connectivity) cont.

I optimization (minimum cost/shortest paths)

I minimum length and minimum cost paths
I properties of minimum cost paths
I properties of edge relaxation
I algorithms for single source min-cost paths

I Bellman Ford
I Dijkstra
I comparison of Bellman-Ford and Dijkstra

I all-pairs min-cost paths

I Johnson’s algorithm, using edge re-weighting

3 / 25



Today...

Min-cost path problems

I all-pairs of endpoints (cont.)
I algorithms for dense graphs, using dynamic programming

Edit distance problems

I dynamic programming solutions

I reformulation as (single source, single destination) min-cost
path problem

4 / 25



Coming up...

Min-cost path problems

I issues related to real-world constraints
I robustness (failure tolerance)
I single-source single destination queries

I issues motion planning (continuous path problems)
I paths on terrains
I obstacle avoidance
I curvature constraints

5 / 25



Algorithms for all-pairs min-cost paths

Problem: Given G , determine δ(u, v), for all u, v ∈ V .

Johnson’s algorithm (or repeated Dijkstra) is particularly efficient
(O(n · (m + n lg n)) for sparse graphs (graphs with m << n2).
What about dense graphs?

There are two straightforward dynamic programming solutions in
this case, both of which involve solving the problem with
progressively relaxed structural constraints.

1. path-length constraints

2. intermediate-vertex constraints

In both cases, we will assume the vertices are labeled 1, 2, . . . , n.

6 / 25



All-pairs min-cost paths, by dynamic programming
path-length constraint relaxation

Let d
(r)
ij denote the minimum cost path from vertex i to vertex j ,

containing at most r edges. Then,

1. d
(0)
ij = 0, if i = j (and ∞, otherwise), and d

(1)
ij = c(i , j)

2. d
(n−1)
ij = δ(i , j)

So, it suffices to see how to construct d
(r)
ij values given d

(r−1)
ij

values.
Key observation:

d
(r)
ij = min{d (r−1)

ij , min
1≤k≤n

{d (r−1)
ik + c(k, j)}}

= min{d (r−1)
ij , min

1≤k≤n
{d (r−1)

ik + d
(1)
kj }}

= min
1≤k≤n

{d (r−1)
ik + d

(1)
kj }

7 / 25



All-pairs min-cost paths, by dynamic programming

path-length constraint relaxation (cont.)

This recurrence suggests the following dynamic programming
solution:

1: construct d
(0)
∗∗ and d

(1)
∗∗

2: for r = 2 to n − 1 do
3: for i = 1 to n do
4: for j = 1 to n do

5: d
(r)
ij ← min1≤k≤n{d (r−1)

ik + d
(1)
kj }

6: end for
7: end for
8: end for

Cost is O(n4) in total.

8 / 25



All-pairs min-cost paths, by dynamic programming
path-length constraint relaxation (cont.)

But...

1. d
(r)
ij = d

(n−1)
ij , for all r ≥ n − 1; and

2. d
(2r)
ij = min1≤k≤n{d (r)

ik + d
(r)
kj }

So we can compute:

1: construct d
(0)
∗∗ and d

(1)
∗∗

2: for t = 1 to dlg ne do
3: for i = 1 to n do
4: for j = 1 to n do

5: d
(2t)
ij = min1≤k≤n{d (2t−1)

ik + d
(2t−1)
kj }

6: end for
7: end for
8: end for

Cost is reduced to O(n3 lg n) in total.
9 / 25



All-pairs min-cost paths, by dynamic programming

intermediate-vertex constraint relaxation

Let d̂
(k)
ij denote the minimum cost path from vertex i to vertex j ,

using intermediate vertices in {1, . . . , k}. Then,

1. d̂
(0)
ij = c(i , j)

2. d̂
(n)
ij = δ(i , j)

So, again it suffices to see how to construct d̂
(k)
ij values given

d̂
(k−1)
ij values.

Key observation:

d̂
(k)
ij = min{d̂ (k−1)

ij , d̂
(k−1)
ik + d̂

(k−1)
kj }

10 / 25



All-pairs min-cost paths, by dynamic programming

intermediate-vertex constraint relaxation (cont.)

This recurrence suggests the following dynamic programming
solution:

1: construct d̂
(0)
∗∗

2: for k = 1 to n do
3: for i = 1 to n do
4: for j = 1 to n do

5: d̂
(k)
ij ← min{d̂ (k−1)

ij , d̂
(k−1)
ik + d̂

(k−1)
kj }

6: end for
7: end for
8: end for

Cost is O(n3) in total.

11 / 25



All-pairs min-cost paths, by dynamic programming

Note:

I space requirements

I path reconstruction

I similarities with Bellman-Ford...distributed implementation

12 / 25



Edit distance Problem

Given two strings (over some fixed alphabet):

X = x1x2 . . . xn
Y = y1y2 . . . ym

we want to transform X to Y with the fewest primitive operations:

I delete a symbol: cost(xi ,−)

I insert a symbol: cost(−, yj)
I replace a symbol: cost(xi , yj)

Small total cost (edit distance) measures similarity of X and Y
(e.g. spell checking, sequence alignment)

13 / 25



Edit distance Problem

optimal substructure:

Either (i) xn is matched with ym, (ii) xn is matched with −
(deleted), or (iii) ym is matched with − (inserted).
Hence, if ED[i , j ] denotes the edit distance of x1 . . . xi to y1 . . . yj ,:

ED[i , j ] = min


ED[i − 1, j − 1] + cost(xi , yj)
ED[i − 1, j ] + cost(xi ,−)
ED[i , j − 1] + cost(−, yj)


dynamic programming solution:

Knowing all cost values, we can compute ED[i , j ] values in
increasing order of i + j (or by row, or column)

14 / 25



Edit Distance Matrix

1

n

2

1 2 m

i

j

New entry depends on only three neighbouring entries.

15 / 25



Edit Distance Matrix

1

n

2

1 2 m

i

j

New entry depends on only three neighbouring entries.

16 / 25



Edit Distance Matrix

1

n

2

1 2 m

i

j

New entry depends on only three neighbouring entries.

17 / 25



Edit distance Problem

dynamic programming solution:

1. Total cost is O(nm)

I each ED-table entry is computed in O(1) time

2. Space can be reduced to O(n + m)

I it suffices to keep only two active columns of ED-table

3. Optimal edit script can be reproduced efficiently

I by divide and conquer

18 / 25



Edit Distance Matrix

1

n

2

1 2 m

i

j

19 / 25



Edit Distance Graph

00

0

1

2

i

n

1 2 j m

20 / 25



Edit Distance Graph

00

0

1

2

i

n

1 2 j m

21 / 25



Edit Distance Graph

vi,jvi,j−1

vi−1,jvi−1,j−1

22 / 25



Edit Distance Graph

vi,jvi,j−1

vi−1,jvi−1,j−1

cost(xi,−)

cost(−, yj)

cost(xi, yj)

23 / 25



Edit Distance Graph

00

0

1

2

i

n

1 2 j m

We want to find the min-cost path from v0,0 to vn,m.

24 / 25



Edit Distance Graph

00

0

1

2

i

n

1 2 j m

We want to find the min-cost path from v0,0 to vn,m.

25 / 25


