CS 420: Advanced Algorithm Design and Analysis Spring 2015 – Lecture 13

Department of Computer Science University of British Columbia

February 24, 2015

Announcements

Assignments...

- Sample solutions to Asst 4 (and Midterm I) have been posted
- Asst5...due Thursday

Midterm II...

- Q/A session...next Tuesday (March 03); 5:30-7:00; DMPT 310
- Exam...Wednesday (March 04); 5:30-7:00; DMPT 310
- ...on material up to and including this Thursday's class
 Readings...
 - minimum-cost path problems [Erickson, Chapt 21, 22; Cormen+, Chapt 25 26; ...]
 - edit-distance [Erickson, Chapt. 5.5, 6]

Last classes...

Graph algorithms

- path existence (connectivity) cont.
- optimization (minimum cost/shortest paths)
 - minimum length and minimum cost paths
 - properties of minimum cost paths
 - properties of edge relaxation
 - algorithms for single source min-cost paths
 - Bellman Ford
 - Dijkstra
 - comparison of Bellman-Ford and Dijkstra
 - all-pairs min-cost paths
 - Johnson's algorithm, using edge re-weighting

Today...

Min-cost path problems

- all-pairs of endpoints (cont.)
 - algorithms for dense graphs, using dynamic programming

Edit distance problems

- dynamic programming solutions
- reformulation as (single source, single destination) min-cost path problem

Coming up...

Min-cost path problems

- issues related to real-world constraints
 - robustness (failure tolerance)
 - single-source single destination queries
- issues motion planning (continuous path problems)
 - paths on terrains
 - obstacle avoidance
 - curvature constraints

Algorithms for all-pairs min-cost paths

Problem: Given G, determine $\delta(u, v)$, for all $u, v \in V$.

Johnson's algorithm (or repeated Dijkstra) is particularly efficient $(O(n \cdot (m + n \lg n)))$ for sparse graphs (graphs with $m \ll n^2$). What about dense graphs?

There are two straightforward *dynamic programming* solutions in this case, both of which involve solving the problem with progressively relaxed *structural constraints*.

- 1. path-length constraints
- 2. intermediate-vertex constraints

In both cases, we will assume the vertices are labeled $1, 2, \ldots, n$.

All-pairs min-cost paths, by dynamic programming path-length constraint relaxation

Let $d_{ij}^{(r)}$ denote the minimum cost path from vertex *i* to vertex *j*, *containing at most r edges*. Then,

1.
$$d_{ij}^{(0)} = 0$$
, if $i = j$ (and ∞ , otherwise), and $d_{ij}^{(1)} = c(i, j)$
2. $d_{ij}^{(n-1)} = \delta(i, j)$

So, it suffices to see how to construct $d_{ij}^{(r)}$ values given $d_{ij}^{(r-1)}$ values.

Key observation:

$$d_{ij}^{(r)} = \min\{d_{ij}^{(r-1)}, \min_{1 \le k \le n} \{d_{ik}^{(r-1)} + c(k,j)\}\}$$

= $\min\{d_{ij}^{(r-1)}, \min_{1 \le k \le n} \{d_{ik}^{(r-1)} + d_{kj}^{(1)}\}\}$
= $\min_{1 \le k \le n} \{d_{ik}^{(r-1)} + d_{kj}^{(1)}\}$

path-length constraint relaxation (cont.)

This recurrence suggests the following dynamic programming solution:

1: construct $d_{**}^{(0)}$ and $d_{**}^{(1)}$ 2: for r = 2 to n - 1 do 3: for i = 1 to n do 4: for j = 1 to n do 5: $d_{ij}^{(r)} \leftarrow \min_{1 \le k \le n} \{ d_{ik}^{(r-1)} + d_{kj}^{(1)} \}$ 6: end for 7: end for 8: end for

Cost is $O(n^4)$ in total.

All-pairs min-cost paths, by dynamic programming path-length constraint relaxation (cont.)

But...
1.
$$d_{ij}^{(r)} = d_{ij}^{(n-1)}$$
, for all $r \ge n-1$; and
2. $d_{ij}^{(2r)} = \min_{1 \le k \le n} \{d_{ik}^{(r)} + d_{kj}^{(r)}\}$
So we can compute:

1: construct
$$d_{**}^{(0)}$$
 and $d_{**}^{(1)}$
2: for $t = 1$ to $\lceil \lg n \rceil$ do
3: for $i = 1$ to n do
4: for $j = 1$ to n do
5: $d_{ij}^{(2^t)} = \min_{1 \le k \le n} \{ d_{ik}^{(2^{t-1})} + d_{kj}^{(2^{t-1})} \}$
6: end for
7: end for
8: end for

Cost is reduced to $O(n^3 \lg n)$ in total.

intermediate-vertex constraint relaxation

Let $\hat{d}_{ij}^{(k)}$ denote the minimum cost path from vertex *i* to vertex *j*, using intermediate vertices in $\{1, \ldots, k\}$. Then,

1.
$$\hat{d}_{ij}^{(0)} = c(i,j)$$

2. $\hat{d}_{ij}^{(n)} = \delta(i,j)$

So, again it suffices to see how to construct $\hat{d}_{ij}^{(k)}$ values given $\hat{d}_{ij}^{(k-1)}$ values. Key observation:

$$\hat{d}_{ij}^{(k)} = \min\{\hat{d}_{ij}^{(k-1)}, \ \hat{d}_{ik}^{(k-1)} + \hat{d}_{kj}^{(k-1)}\}$$

intermediate-vertex constraint relaxation (cont.)

This recurrence suggests the following dynamic programming solution:

1: construct $\hat{d}_{**}^{(0)}$ 2: for k = 1 to n do 3: for i = 1 to n do 4: for j = 1 to n do 5: $\hat{d}_{ij}^{(k)} \leftarrow \min\{\hat{d}_{ij}^{(k-1)}, \ \hat{d}_{ik}^{(k-1)} + \hat{d}_{kj}^{(k-1)}\}$ 6: end for 7: end for 8: end for

Cost is $O(n^3)$ in total.

Note:

- space requirements
- path reconstruction
- similarities with Bellman-Ford...distributed implementation

Edit distance Problem

Given two strings (over some fixed alphabet):

$$X = x_1 x_2 \dots x_n$$
$$Y = y_1 y_2 \dots y_m$$

we want to *transform* X to Y with the fewest primitive operations:

- ▶ delete a symbol: cost(x_i, −)
- ► insert a symbol: cost(−, y_j)
- replace a symbol: cost(x_i, y_j)

Small total cost (edit distance) measures similarity of X and Y (e.g. spell checking, sequence alignment)

Edit distance Problem

optimal substructure:

Either (i) x_n is matched with y_m , (ii) x_n is matched with – (deleted), or (iii) y_m is matched with – (inserted). Hence, if ED[i, j] denotes the edit distance of $x_1 \dots x_i$ to $y_1 \dots y_i$.

$$\mathsf{ED}[i,j] = \min \left\{ \begin{array}{l} \mathsf{ED}[i-1,j-1] + \mathsf{cost}(x_i,y_j) \\ \mathsf{ED}[i-1,j] + \mathsf{cost}(x_i,-) \\ \mathsf{ED}[i,j-1] + \mathsf{cost}(-,y_j) \end{array} \right\}$$

dynamic programming solution:

Knowing all cost values, we can compute ED[i, j] values in increasing order of i + j (or by row, or column)

.

New entry depends on only

16/25

.

New entry depends on only three neighbouring entries.

17/25

Edit distance Problem

dynamic programming solution:

- 1. Total cost is O(nm)
 - each ED-table entry is computed in O(1) time
- 2. Space can be reduced to O(n+m)
 - ▶ it suffices to keep only *two* active columns of ED-table
- 3. Optimal edit script can be reproduced efficiently
 - by divide and conquer

23 / 25

We want to find the min-cost path from $v_{0,0}$ to $v_{n,m}$.

24 / 25

We want to find the min-cost path from $v_{0,0}$ to $v_{n,m}$.