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Announcements

Assignments...
» Sample solutions to Asst 4 (and Midterm |) have been posted
> Asst5...due Thursday

Midterm II...

» Q/A session...next Tuesday (March 03); 5:30-7:00; DMPT
310

» Exam...Wednesday (March 04); 5:30-7:00; DMPT 310
» ...on material up to and including this Thursday's class
Readings...

» minimum-cost path problems [Erickson, Chapt 21, 22;
Cormen+, Chapt 25 26; ...

» edit-distance [Erickson, Chapt. 5.5, 6]
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Last classes...

Graph algorithms
» path existence (connectivity) cont.
» optimization (minimum cost/shortest paths)

minimum length and minimum cost paths
properties of minimum cost paths
properties of edge relaxation
algorithms for single source min-cost paths
» Bellman Ford
» Dijkstra
» comparison of Bellman-Ford and Dijkstra

vvyVvyy

> all-pairs min-cost paths

» Johnson's algorithm, using edge re-weighting
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Today...

Min-cost path problems

» all-pairs of endpoints (cont.)
» algorithms for dense graphs, using dynamic programming

Edit distance problems

» dynamic programming solutions

» reformulation as (single source, single destination) min-cost
path problem
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Coming up...

Min-cost path problems

> issues related to real-world constraints

» robustness (failure tolerance)
> single-source single destination queries

» issues motion planning (continuous path problems)

> paths on terrains
» obstacle avoidance
» curvature constraints
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Algorithms for all-pairs min-cost paths

Problem: Given G, determine 6(u,v), for all u,v € V.

Johnson's algorithm (or repeated Dijkstra) is particularly efficient
(O(n - (m+ nlgn)) for sparse graphs (graphs with m << n?).
What about dense graphs?

There are two straightforward dynamic programming solutions in
this case, both of which involve solving the problem with
progressively relaxed structural constraints.

1. path-length constraints

2. intermediate-vertex constraints

In both cases, we will assume the vertices are labeled 1,2,...,n.
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All-pairs min-cost paths, by dynamic programming
path-length constraint relaxation

Let d,.(jr) denote the minimum cost path from vertex i to vertex j,
containing at most r edges. Then,

1. d,-S-O) =0, if i = (and oo, otherwise), and d,.(jl) = c(i,))

2. d{" Y = 6(i.j)

) (1)

values given du

So, it suffices to see how to construct d,.(jr
values.
Key observation:

(n _ . (r—-1) . (r—1) .
d;’ = min{d; ", 1r§n/<|2n{dik + c(k,j)}}
(1) (r=1) | 41
= min{d; "/, 121klgn{dik +d,;’}}

I (VR c)
= Qg

7/25



All-pairs min-cost paths, by dynamic programming

path-length constraint relaxation (cont.)

This recurrence suggests the following dynamic programming
solution:

1: construct dig) and dﬁ)
2. forr=2ton—1do
3: fori=1to ndo

4 for j=1to ndo

b: d((]r) — minlgkgn{di(kr_l) + dl(gl)}
6: end for

7 end for

8: end for

Cost is O(n*) in total.
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All-pairs min-cost paths, by dynamic programming
path-length constraint relaxation (cont.)

But...
1. d,.(jr) = d("_l) forall r >n—1: and

2. d,52 = = m|n1<k<,,{dlk + d }
So we can compute:

1: construct d,ES) and d,gi)
2: for t =1 to [lgn] do
3: fori=1tondo

4 for j =1to ndo

5: dl§2 ) — m|n1<k<,,{d, (27 + dl(;t_l)}
6: end for

7 end for

8: end for

Cost is reduced to O(n3lg n) in total.
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All-pairs min-cost paths, by dynamic programming
intermediate-vertex constraint relaxation

Let c?,.(.k) denote the minimum cost path from vertex i to vertex j,
using intermediate vertices in {1,..., k}. Then,

53(0) ..

L d;” = c(i,))

2. c7( " = =4(1,J)
So, again it suffices to see how to construct c7i(jk)

A(k—1
dI-S- ) values.
Key observation:

values given

5(k) (k— 1) A(k=1) | 4(k-1)
d; _mln{d dy ' +dy )
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All-pairs min-cost paths, by dynamic programming

intermediate-vertex constraint relaxation (cont.)

This recurrence suggests the following dynamic programming
solution:

1: construct d( )

2: for k =1to ndo
3: fori=1tondo
4 for j=1to ndo

s A min{dD, gD 4 gy
6: end for

7 end for

8: end for

Cost is O(n%) in total.
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All-pairs min-cost paths, by dynamic programming

Note:
> space requirements
» path reconstruction

» similarities with Bellman-Ford...distributed implementation
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Edit distance Problem

Given two strings (over some fixed alphabet):
X =x1X0...Xn
Y =wviyo...¥Ym
we want to transform X to Y with the fewest primitive operations:

» delete a symbol: cost(x;, —)
> insert a symbol: cost(—, y;)

> replace a symbol: cost(x;, ;)

Small total cost (edit distance) measures similarity of X and Y
(e.g. spell checking, sequence alignment)
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Edit distance Problem

optimal substructure:

Either (i) x, is matched with y,,, (ii) x, is matched with —
(deleted), or (iii) ym is matched with — (inserted).
Hence, if EDJ/, j] denotes the edit distance of xi ...x; to yi...yj,:

ED[i — 1,/ — 1] + cost(x;, y;)
ED[i,j] = min{ ED[i — 1, ] + cost(x;, )
ED[i,j — 1] + cost(—, yj)

dynamic programming solution:

Knowing all cost values, we can compute ED[/, j] values in
increasing order of j + j (or by row, or column)
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Edit Distance Matrix
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Edit Distance Matrix

New entry depends on only
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Edit Distance Matrix

New entry depends on only three neighbouring entries.
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Edit distance Problem

dynamic programming solution:
1. Total cost is O(nm)
» each ED-table entry is computed in O(1) time
2. Space can be reduced to O(n+ m)
» it suffices to keep only two active columns of ED-table
3. Optimal edit script can be reproduced efficiently

» by divide and conquer
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Edit Distance Matrix
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Edit Distance Graph
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Edit Distance Graph
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Edit Distance Graph

Vi-1,5—1 ® Vi-1,5

Vi,j—1 G Vi, j
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Edit Distance Graph

cost(z;,y;)

Vi-1,5—1 ® Vi-1,5

 cost(ai, )

Vi,j

\
N cost(—,y;)
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Edit Distance Graph

zi : O g
SRR

We want to find the min-cost path from vy to v, m.
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Edit Distance Graph

We want to find the min-cost path from vy to v, m.
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