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Announcements

Assignments...

I Asst4...due Thursday

Readings...

I review material on graph representations and basic graph
algorithms

I disjoint set maintenance (UNION-FIND) [Erickson, Chapt.
17; Cormen+, Chapt. 21]

I minimum-cost path problems [Erickson, Chapt 21, 22;
Cormen+, Chapt 25 26; ...]
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Last class...

Graph algorithms

I review of basic graph notation/terminology

I review of basic graph representations
I review of basic graph properties

I paths and connectivity

I review of basic graph algorithms
I connectivity

I breadth-first and depth-first search (adjacency lists)
I testing connectivity using an adjacency matrix
I connectivity in semi-dynamic graphs
I ++++ UNION-FIND data structures
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Strategies for disjoint-set maintenance

Two simple strategies suggest themselves:

I associate an explicit component number with each vertex, and
a set of vertices with each component number

I FIND operation takes O(1) time
I UNION operation takes O(lg n) amortized time

I maintain each component as a tree and store the component
number at the root

I UNION operation links the smaller tree to the larger tree (at
the root): O(1) time

I FIND operation involves walking to the tree root: O(lg n) time
in the worst case, since the height of a tree with k elements
never exceeds lg k
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Strategies for disjoint-set maintenance

A (slightly)more involved, more efficient and more interesting
strategy involves path compression:

I maintain each component as a tree and store the component
number at the root

I UNION operation links the smaller tree to the larger tree (at
the root): O(1) time

I FIND operation involves walking to the tree root
I this is followed by path compression, which makes every node

on the access path an immediate child of the root
I the amortized cost of FIND is reduced to O(α(n)), where α is

an extremely slow growing function (constant, for all practical
purposes)
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How slow-growing is α(n)?

Suppose that f0(i , j) = i + j and fk(i , j), k > 0, is defined by the
procedure:

1: t ← i
2: for r ← 1 to j − 1 do
3: t ← fk−1(i , t)
4: end for

What function is computed by f1(i , j)? f2(i , j)? f3(i , j)? f4(i , j)?

α(n) is the inverse of Ackerman’s function, which grows faster
than fk(i , j) for any fixed k!
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Path Optimization

Let G be an (edge) weighted directed graph, where c(e) (not
necessarily positive) denotes the weight/cost of edge e. The path
P = 〈v0, v1, . . . , vk〉 has length k and weight/cost:

c(P) =
∑

1≤i≤k
c(vi−1, vi )

We denote by δ(u, v) the cost of the minimum cost path from u to
v :

min{c(P) | P is a path from u to v}

By convention we say that δ(u, v) =∞ if there is no path from u
to v in G .
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Properties of minimum cost paths

Algorithms for min cost paths exploit the following properties:

I existence: provided G has no negative cost cycle

I acyclic: removing a cycle reduces total cost
... so min cost paths have at most n − 1 edges

I optimal substructure: min cost paths are built out of min cost
(sub)paths

I tree representation min cost paths from a single source s form
a tree rooted at s.

I local optimality:

δ(u,w) = min
v∈A−1[w ]

{δ(u, v) + c(v ,w)}
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Properties of minimum cost paths

The local optimality property is the basis for the incremental
improvement of min cost path estimates:

Let d [u, v ] be an upper bound on δ(u, v) (e.g. d [u, v ] = c(u, v)
and d [u, u] = 0).

Then, if d [u,w ] > d [u, v ] + c(v ,w) we can improve the estimate
d [u,w ] by replacing it with d [u, v ] + c(v ,w).

This is called a relaxation on the edge (v ,w).
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Properties of edge relaxation

Edge relaxation is fundamental operation in min cost path
algorithms. It has the following critical properties:

I completeness: When no further improvement by relaxation is
possible then d [u,w ] = δ(u,w)
... (i.e. local optimality implies global optimality)

I finiteness

I restriction
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Algorithms for single-source min-cost paths
Problem: Given G and s ∈ V , determine δ(s, v), for all v ∈ V .

A. [Bellman-Ford algorithm:]

1. initialize d [s, v ] = c(s, v)

2. perform rounds of global relaxation (relax every edge
(u, v) ∈ E )

d [s, v ]← min{d [s, v ], d [s, u] + c(u, v)}

3. stop when no further improvement by relaxation is possible

Analysis:

I Invariant: after r rounds, d [s, v ] = δ(s, v), for all v whose
min-cost path from s has at most r edges

I there are at most n − 1 rounds, so the total cost is O(nm)

I algorithm works even if there are negative cost edges (but no
negative cost cycles)
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Algorithms for single-source min-cost paths
Problem: Given G and s ∈ V , determine δ(s, v), for all v ∈ V .

B. [Dijkstra’s algorithm:]

I assumes all edge costs are non-negative
I grows the min-cost path tree rooted at s incrementally (by a

greedy approach)

1: S ← {s}
2: dS [s, v ] = min-cost path from s to v , with intermediate vertices

in S
3: while V − S 6= ∅ do
4: add v to S if it minimizes dS [s, v ] among all v ∈ V − S
5: update dS (by relaxation on edges out of v)
6: end while

Maintain dS values for v ∈ V − S in a priority queue
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Complexity of Dijkstra’s algorithm

Dijkstra’s algorithm uses n − 1 EXTRACT-MIN operations (line 4)
and a total of at most m DECREASE-KEY operations on the
underlying heap. Various heap implementations give more-or-less
efficient implementations:

Structure EXTRACT-MIN DECREASE-KEY TotalCost

naive heap Θ(n) Θ(1) Θ(n2)

binary heap Θ(lg n) Θ(lg n) Θ(m lg n)

Fibonacci heap Θ(lg n)∗ Θ(1)∗ Θ(n lg n+m)

(*) denotes amortized cost
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Bellman-Ford vs. Dijkstra

Note: Both Bellman-Ford and Dijkstra are easily modified to
permit min-cost path recovery in the same time. How?

Dijkstra’s algorithm has advantages and disadvantages:

I faster: Θ(n lg n + m) instead of Θ(nm)

I less general: assumes no negative weight edges

I more centralized: less suitable for parallel/distributed
implementation
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All-pairs min-cost paths

The most obvious approach is to compute shortest paths from all
possible sources, using repeated Bellman-Ford (in case of negative
weights) or Dijkstra (in case of only non-negative weights):

I cost is O(n · (nm)) for repeated Bellman-Ford

I cost is O(n · (n lg n + m)) for repeated Dijkstra
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All-pairs min-cost paths

A less obvious approach, particularly suitable for sparse graphs,
uses the idea of reweighting the edges of G , so that edges become
non-negative and Dijkstra’s algorithm can be applied.
How can we do it?

I add a suitable constant to each edge?
No...it alters costs in proportion to path length

I need something that treats all paths with same endpoints
equitably
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Coming up...

Min-cost path problems

I all-pairs of endpoints
I Johnson’s algorithm, using edge re-weighting
I algorithms for dense graphs, using dynamic programming

I applications in string matching
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