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Announcements

Assignments...

I Solutions to Asst 2 and 3 have been posted

I Asst3...back today

I Asst4...out (due next Thursday)
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Announcements

Readings...

I review material on graph representations and basic graph
algorithms

I minimum-cost path problems [Erickson, Chapt 21, 22;
Cormen+, Chapt 25 26; ...]
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Last class...
Exploiting non-uniform access patterns

I unknown/changing access probabilities
... adaptive (self-organizing) tree-structured dictionaries

I restructuring primitive...tree rotations
I restructuring strategies...

I rotate-to-root is not c-competitive

I splay steps (zig-zag and zig-zig)
I splay-to-root strategy

I comparison with rotate-to-root
I intuition: access path compression

I amortized analysis of splaying
I review of amortization using potential functions
I weight-based potential assignment: weights, authority, rank

and potential
I Access Theorem
I —- outline of proof, using Access Lemma
I —- important Corollaries
I —- dynamic optimality conjecture
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Looking ahead...

After the midterm...

I on to graphs, and graph algorithms
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Today...

Graph algorithms

I review of basic graph notation/terminology

I review of basic graph representations
I review of basic graph properties

I paths and connectivity

I review of basic graph algorithms
I connectivity

I breadth-first and depth-first search (adjacency lists)
I testing connectivity using an adjacency matrix
I connectivity in semi-dynamic graphs
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Review of basic graph notation and terminology

A graph G is a pair (V ,E ) where:

I V is a set of vertices
I E ⊆ V × V is a set of edges

I frequently denote |V | by n and |E | by m
I if the relation E is symmetric ((u, v) ∈ E iff (v , u) ∈ E ) then

the graph G is undirected. Edges in an undirected graph are
simply un-ordered pairs of vertices. (otherwise directed)

I if E has an associated weight/cost function c then G is (edge)
weighted

I if E is a multi-set, then G is called a multi-graph
I if E is an arbitrary subset of 2V , then G is called a hypergraph
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Review of basic graph representations

A graphical representation of G consists of n points (depicting
vertices) and m arcs/arrows (depicting edges).

v1

v7 v6

v5

v4

v3v2
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Graphical representation

v1

v7 v6

v5

v4

v3v2

Raises issues:

I visualization of large graphs

I optimization of esthetic considerations; edge crossings,
symmetries, clusters, etc.
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Review of basic graph representations

An adjacency matrix representation of G is the n × n Boolean
({0, 1}-valued) array A

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


where ai ,j = 1 if and only if there is an edge from vertex vi to
vertex vj . Hmmm...reminds me of a direct access table....

I fast check for presence of a specified edge

I space requirement? Θ(n2) bits?

I initialization?
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Review of basic graph representations

An adjacency list representation of G consists of n lists
Adj[v1], . . . ,Adj[vn], one for each vertex in vi ∈ V , specifying the
vertices vj for which (vi , vj) ∈ E .

I requires space proportional to n + m

I requires more work to check for presence of a specified edge...

I but makes it easy to check for the next out-going edge (a
critical step in many algorithms)
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Review of basic graph representations

An embedded graph is a graph together with an assignment of
locations, within some embedding space, to all vertices.
An embedded graph is a planar map if it has no edge crossings. A
graph that can be represented as a planar map is said to be planar.
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Review of basic graph properties

A path in a graph G is a sequence of vertices u1, u2, . . . , uk such
that (ui , ui+1) ∈ E , for 1 ≤ i < k .

I path goes from u1 to uk (not necessarily symmetric in a
digraph)

I path is simple if no vertex is repeated

I path is a cycle if u1 = uk

A graph G is connected if there is a path from u to v , for every
pair of vertices u, v .

I the property is called strongly connected in digraphs

I the equivalence classes of the relation “is joined by a path”
are called the connected components of G
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Review of basic graph algorithms

Testing connectivity of a graph G or, more generally, finding the
connected components of G , can be done in O(n + m) time by two
different techniques, both of which use an adjacency list
representation of G (see Kleinberg/Tardos Chapter 3):

I breadth-first search
I queue-directed (FIFO); explore uniformly expanding wavefront

I depth-first search
I stack-directed (LIFO)
I also identifies strongly connected components in O(n + m)

time

15 / 21



Review of basic graph algorithms

How hard is it to test if a given graph G is connected (or just if
there is a path from vertex vi to vertex vj), when the graph is
represented as an adjacency matrix A?

Claim: Ω(n2) (a fixed fraction) of the entries of A must be
probed, in the worst case, in order to determine if G is connected.

I proof follows from an adversary strategy

I the same claim holds for most natural (non-trivial) graph
properties

I Ω(n5/4) probes are required on a randomized model
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Review of basic graph algorithms

How hard is it to test if a given graph G is connected (or just if
there is a path from vertex vi to vertex vj), when the graph is
represented as an adjacency matrix A?

On the other hand (as we shall see)

I with sufficient preprocessing A can be converted into a matrix
A∗ (the transitive closure of A) that captures the relation “is
connected by a path”.

I using A∗ path existence queries can be answered in O(1) time
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Testing connectivity in (semi)-dynamic graphs

What happens if the graph is changing over time?

I A graph G is semi-dynamic if edges are added to (but not
deleted from) G over time

I recall Kruskal’s minimum spanning tree algorithm

I the connected components of G are naturally maintained by a
disjoint set data structure:

I maintain each connected component as a set (of vertices)
I operations include MAKE-SET, FIND-SET, and UNION
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Strategies for disjoint-set maintenance

Two simple strategies suggest themselves:

I associate an explicit component number with each vertex, and
a set of vertices with each component number

I FIND operation takes O(1) time
I UNION operation takes O(lg n) amortized time (weighted

union)

I maintain each component as a tree and store the component
number at the root

I UNION operation links the smaller tree to the larger tree (at
the root): O(1) time

I FIND operation involves walking to the tree root: O(lg n) time
in the worst case, since the height of a tree with k elements
never exceeds lg k
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Strategies for disjoint-set maintenance

A (slightly)more involved, more efficient and more interesting
strategy involves path compression:

I maintain each component as a tree and store the component
number at the root

I UNION operation links the smaller tree to the larger tree (at
the root): O(1) time

I FIND operation involves walking to the tree root
I this is followed by path compression, which makes every node

on the access path an immediate child of the root
I the amortized cost of FIND is reduced to O(α(n)), where α is

an extremely slow growing function (constant, for all practical
purposes)
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