# CS 420: Advanced Algorithm Design and Analysis Spring 2015 – Lecture 10

Department of Computer Science University of British Columbia



February 05, 2015

#### Announcements

Assignments...

- Solutions to Asst 2 and 3 have been posted
- Asst3...back today
- Asst4...out (due next Thursday)

#### Readings...

- review material on graph representations and basic graph algorithms
- minimum-cost path problems [Erickson, Chapt 21, 22; Cormen+, Chapt 25 26; ...]

#### Last class...

#### Exploiting non-uniform access patterns

- unknown/changing access probabilities
  - ... adaptive (self-organizing) tree-structured dictionaries
    - restructuring primitive...tree rotations
    - restructuring strategies...
      - rotate-to-root is not c-competitive
    - splay steps (zig-zag and zig-zig)
    - splay-to-root strategy
      - comparison with rotate-to-root
      - intuition: access path compression
    - amortized analysis of splaying
      - review of amortization using potential functions
      - weight-based potential assignment: weights, authority, rank and potential
      - Access Theorem
      - —- outline of proof, using Access Lemma
      - —- important Corollaries
      - —- dynamic optimality conjecture

After the midterm...

on to graphs, and graph algorithms

# Today...

#### Graph algorithms

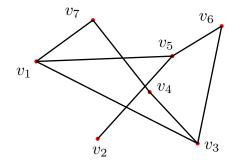
- review of basic graph notation/terminology
- review of basic graph representations
- review of basic graph properties
  - paths and connectivity
- review of basic graph algorithms
  - connectivity
    - breadth-first and depth-first search (adjacency lists)
    - testing connectivity using an adjacency matrix
    - connectivity in semi-dynamic graphs

Review of basic graph notation and terminology

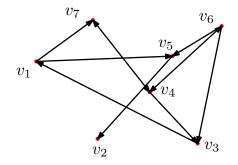
A graph G is a pair (V, E) where:

- V is a set of vertices
- $E \subseteq V \times V$  is a set of *edges* 
  - frequently denote |V| by n and |E| by m
  - if the relation E is symmetric ((u, v) ∈ E iff (v, u) ∈ E) then the graph G is undirected. Edges in an undirected graph are simply un-ordered pairs of vertices. (otherwise directed)
  - ▶ if E has an associated weight/cost function c then G is (edge) weighted
  - ▶ if *E* is a multi-set, then *G* is called a *multi-graph*
  - if E is an arbitrary subset of  $2^{V}$ , then G is called a hypergraph

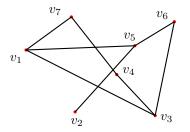
A *graphical* representation of G consists of n points (depicting vertices) and m arcs/arrows (depicting edges).



A *graphical* representation of G consists of n points (depicting vertices) and m arcs/arrows (depicting edges).



# Graphical representation



Raises issues:

- visualization of large graphs
- optimization of esthetic considerations; edge crossings, symmetries, clusters, etc.

An *adjacency matrix* representation of G is the  $n \times n$  Boolean ({0,1}-valued) array A

| a <sub>1,1</sub> | a <sub>1,2</sub> |       | a <sub>1,n</sub> ] |
|------------------|------------------|-------|--------------------|
| a <sub>2,1</sub> | a <sub>2,2</sub> | •••   | a <sub>2,n</sub>   |
| ÷                | ÷                | ·     | :                  |
|                  | a <sub>n,2</sub> | • • • | a <sub>n,n</sub> ] |

where  $a_{i,j} = 1$  if and only if there is an edge from vertex  $v_i$  to vertex  $v_j$ . Hmmm...reminds me of a direct access table....

- fast check for presence of a specified edge
- space requirement?  $\Theta(n^2)$  bits?
- initialization?

An *adjacency list* representation of *G* consists of *n* lists  $Adj[v_1], \ldots, Adj[v_n]$ , one for each vertex in  $v_i \in V$ , specifying the vertices  $v_j$  for which  $(v_i, v_j) \in E$ .

- requires space proportional to n + m
- requires more work to check for presence of a specified edge...
- but makes it easy to check for the *next out-going edge* (a critical step in many algorithms)

An *embedded graph* is a graph together with an assignment of locations, within some embedding space, to all vertices. An embedded graph is a *planar map* if it has no edge crossings. A graph that can be represented as a planar map is said to be *planar*.

# Review of basic graph properties

A *path* in a graph G is a sequence of vertices  $u_1, u_2, \ldots, u_k$  such that  $(u_i, u_{i+1}) \in E$ , for  $1 \le i < k$ .

- ▶ path goes from u<sub>1</sub> to u<sub>k</sub> (not necessarily symmetric in a digraph)
- path is simple if no vertex is repeated
- path is a *cycle* if  $u_1 = u_k$

A graph G is *connected* if there is a path from u to v, for every pair of vertices u, v.

- the property is called strongly connected in digraphs
- ► the equivalence classes of the relation "is joined by a path" are called the *connected components* of G

# Review of basic graph algorithms

Testing *connectivity* of a graph *G* or, more generally, finding the connected components of *G*, can be done in O(n + m) time by two different techniques, both of which use an adjacency list representation of *G* (see Kleinberg/Tardos Chapter 3):

- breadth-first search
  - queue-directed (FIFO); explore uniformly expanding wavefront
- depth-first search
  - stack-directed (LIFO)
  - ▶ also identifies strongly connected components in O(n + m) time

# Review of basic graph algorithms

How hard is it to test if a given graph G is connected (or just if there is a path from vertex  $v_i$  to vertex  $v_j$ ), when the graph is represented as an adjacency matrix A?

**Claim**:  $\Omega(n^2)$  (a fixed fraction) of the entries of A must be probed, in the worst case, in order to determine if G is connected.

- proof follows from an *adversary strategy*
- the same claim holds for most natural (non-trivial) graph properties
- $\Omega(n^{5/4})$  probes are required on a randomized model

# Review of basic graph algorithms

How hard is it to test if a given graph G is connected (or just if there is a path from vertex  $v_i$  to vertex  $v_j$ ), when the graph is represented as an adjacency matrix A?

On the other hand (as we shall see)

- with sufficient preprocessing A can be converted into a matrix A\* (the *transitive closure* of A) that captures the relation "is connected by a path".
- using  $A^*$  path existence queries can be answered in O(1) time

Testing connectivity in (semi)-dynamic graphs

What happens if the graph is changing over time?

- ► A graph G is semi-dynamic if edges are added to (but not deleted from) G over time
  - recall Kruskal's minimum spanning tree algorithm
- the connected components of G are naturally maintained by a disjoint set data structure:
  - maintain each connected component as a set (of vertices)
  - operations include MAKE-SET, FIND-SET, and UNION

### Strategies for disjoint-set maintenance

Two simple strategies suggest themselves:

- associate an explicit component number with each vertex, and a set of vertices with each component number
  - FIND operation takes O(1) time
  - UNION operation takes O(lg n) amortized time (weighted union)

maintain each component as a tree and store the component number at the root

- ► UNION operation links the smaller tree to the larger tree (at the root): O(1) time
- FIND operation involves walking to the tree root: O(lg n) time in the worst case, since the height of a tree with k elements never exceeds lg k

#### Strategies for disjoint-set maintenance

A (slightly)more involved, more efficient and more interesting strategy involves *path compression*:

- maintain each component as a tree and store the component number at the root
  - ► UNION operation links the smaller tree to the larger tree (at the root): O(1) time
  - FIND operation involves walking to the tree root
    - this is followed by path compression, which makes every node on the access path an immediate child of the root
    - the amortized cost of FIND is reduced to O(α(n)), where α is an *extremely* slow growing function (constant, for all practical purposes)