
Input-Thrifty Algorithms 
and hyperbolic dovetailing 

 
David  Kirkpatrick  UBC 

 
 
 
 
 

CS 420 – Spring 2015 
 



Acknowledgements 

• Rolf Klein  
• Robert Tseng 
• Sandra Zilles and  
• (especially) Raimund Seidel 



Overview 

•   Introduction and motivation 
  Input-thrifty algorithms 

•   List search 
•   Hyperbolic dovetailing 
•   Applications to input-thrifty   

algorithms 
•   Extensions & generalizations 



Overview 

•   Introduction and motivation 
  Input-thrifty algorithms 

•   List search 
•   Hyperbolic dovetailing 
•   Applications to input-thrifty   

algorithms 
•   Extensions & generalizations 



f(X)	


x1	
x2	
x3	
 xi	
 xm	


computing symmetric functions	

over large input/data sets	


…	
 …	




f(X)	


x1	
x2	
x3	
 xi	
 xm	


computing symmetric functions	

over large input/data sets	


…	
 …	




f(X)	




f(X)	


individual input/data items	

are (re)presented 	

hierarchically	




f(X)	

thrifty input/data consumption:	

take only what you need	




f(X)	

thrifty input/data consumption:	

take only what you need	
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Suppose further that the points 
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More specifically, if there is a 
proof using only d bits, can we 
find it by examining only O(d) 
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Other generalizations…	


	

•  searching for a goal in a general symmetric tree	


•  searching for multiple goals	
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