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thrifty input/data consumption:
take only what you need £f(X)
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Motivation

Some functions can be computed with less
than full precision.

Inputs/data may initially be known up to some
limited precision/certainty; greater precision is
available, but at additional cost.

" sensor data

" implicit representation--e.g. root-finding
" hierarchical data structures

" sampling error
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Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin?
Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?
More specifically, if there 1s a
proof using only d bits, can we
find it by examining only O(d)
bits?”
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Model (operations)

= Arbitrary refinement of uncertainty regions
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= Sequential bit probes
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1-d origin enclosure: given n numbers
pM, p@ . p™ find a pair p®, pO that
bracket a given number a. (1.e. show
p<a<pW, for some i, j.)
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A. Given m numbers p, p@ . pm),
1dentify at least one that differs from a
given number . (i.e. show pY > a or
pY< a, for some i.)
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that bracket a given number a. (1.e.
show p¥<a < pW, for some i, j.)
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Each list ends with a sign
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Each list ends with a sign
Search for one of each type
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Objective:
Walk from s to ¢ as efficiently as possible.



Objective:
Walk from s to ¢ as efficiently as possible.

Problem:
The individual path lengths d,, d,, ..., d,,
are not known!
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* when to turn around?
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* when to turn around?

* which path to explore next?
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* worst case...
all strategies are horrible!

* competitive analysis
behaviour should reflect intrinsic
complexity of input
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Why should I (you) be interested?

* search games [Gal " 80]

* geometric search in unknown environments
[Papadimitriou et al. ‘89, Fleischer et al. ~ 04]

* randomized/heuristic algorithm design
[Luby et al. ‘93, Kao et al. ’ 98]

* playing slot machines...conducting research...life



This seems vaguely familiar...
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“spiraling” breadth-first (equitable) search
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remains optimal under a variety of cost models
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optimal multi-process “dovetailing”



What if there 1s more than one pasture?




multi-pasture cow-paths problem
v
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multi-pasture cow-paths problem
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breadth-first search?
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depth-first search?

‘N .
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depth-first search?
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Both breadth-first and depth-first search
can be arbitrarily bad



Both breadth-first and depth-first search
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of the shortest certificate.



Both breadth-first and depth-first search
can be arbitrarily bad -- relative to the size
of the shortest certificate.

But can we hope to discover short
certificates quickly?



Suppose an algorithm is given the
pattern i={A,, A,, ..., A} of list
lengths, but not their presentation.
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Adversary strategy: Maintain lists in

order of exploration length. Force

continued exploration as long as sequence
1s consistent with input pattern 7.
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Adversary strategy: Maintain lists in

order of exploration length. Force

continued exploration as long as sequence
1s consistent with input pattern 7.

i..l N




Game ends when some list
is fully explored...

1k




Game ends when some list
is fully explored...
... and the adversary has
forced the exploration of
the associated region

16




The i-th longest list has an
associated region of area c,
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The i-th longest list has an
associated region of area ¢, = iA,
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Theorem Al. Any algorithm that solves
the list-exploration problem with inputs of
pattern ;t can be forced to make min, {c;}

steps,
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steps, even if the algorithm knows .



The strategy BDEFS(\,) succeeds,
in the worst case, with cost ¢, = i/,
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Theorem Al. Any algorithm that solves
the list-exploration problem with inputs of
pattern ;t can be forced to make min, {c;}
steps, even if the algorithm knows .

So we refer to ¢(t) = min, {c,} as the
intrinsic (worst-case) cost of the list-

exploration problem with input pattern s.



Theorem A2. There is an algorithm that
solves the list-exploration problem (with
arbitrary inputs) in

O( ¢(rt) In min {m, c(m)} ) steps,



Theorem A2. There is an algorithm that
solves the list-exploration problem (with
arbitrary inputs) in

O( ¢(rt) In min {m, c(m)} ) steps,

without knowing the input pattern .
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c=1;
repeat until some list end 1s reached
for i=1 to m
continue exploration of list i
up to position c/i
increment ¢
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Hyperbolic scan
y = ¢/ x, for increasing c
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Why a hyperbolic scan?

[T T T T TTTTT]
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Total area under curve
~clnc

y=c/x
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Theorem A2. There is an algorithm that
solves the list-exploration problem (with
arbitrary inputs) in

O( ¢(rt) In min {m, c(m)} ) steps,

without knowing the input pattern .

Can we do better?



Theorem A3. Any algorithm that solves
the list-exploration problem can be forced
to make Q (¢ In ¢” ) steps,

even if the algorithm knows that the input
pattern T satisfies c(x) = ¢
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Given previous solution it suffices to
search for one specified sign (+)
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y = ¢/ x, for increasing c
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Modified hyperbolic scan:
keep areas of supported
rectangles constant
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Modified hyperbolic scan:
keep areas of supported
rectangles constant
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What about the case?

Similar results....

® Intrinsic cost 18 min, mA/(m-i)
* hyperbolic scan remains log-competetive



Other generalizations...

 searching for a goal in a general symmetric tree

e searching for multiple goals
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