Input-Thrifty Algorithms and hyperbolic dovetailing

David Kirkpatrick UBC

CS 420 – Spring 2015

Rolf Klein

- Robert Tseng
- Sandra Zilles and
- (especially) Raimund Seidel

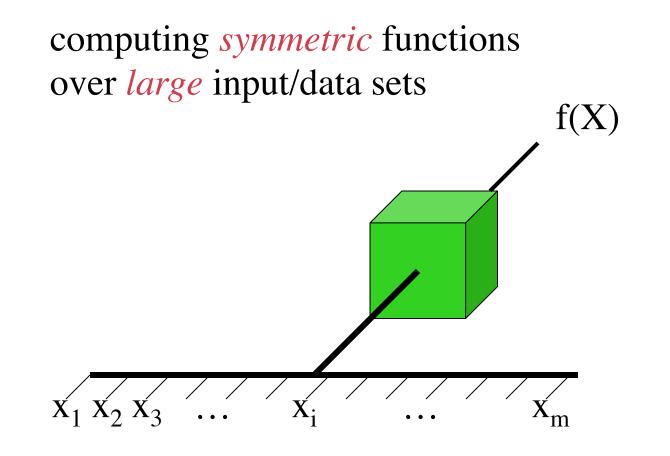
Acknowledgements

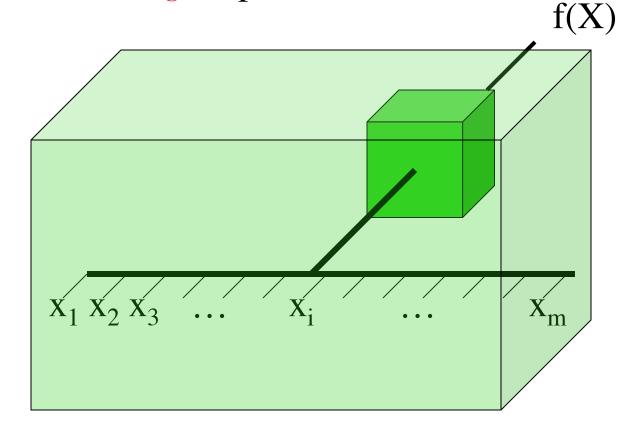
- Introduction and motivation Input-thrifty algorithms
- List search
- Hyperbolic dovetailing
- Applications to input-thrifty algorithms
- Extensions & generalizations

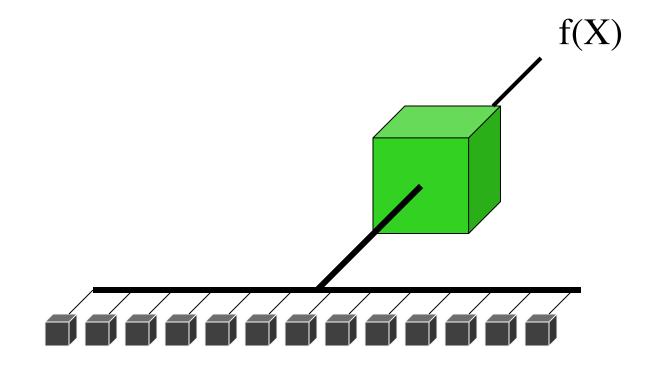
Overview

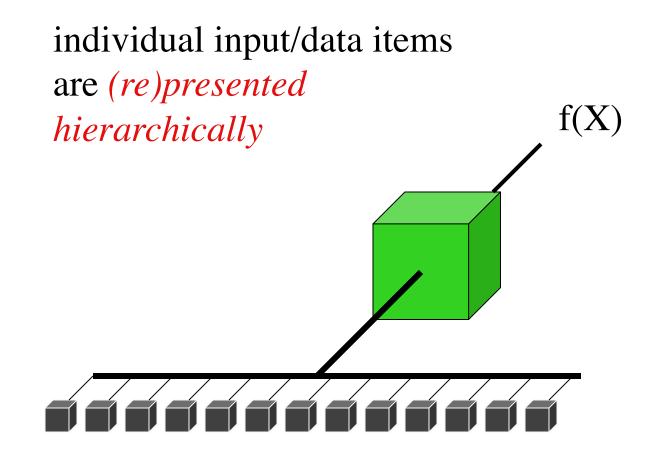
- Introduction and motivation Input-thrifty algorithms
- List search
- Hyperbolic dovetailing
- Applications to input-thrifty algorithms
- Extensions & generalizations

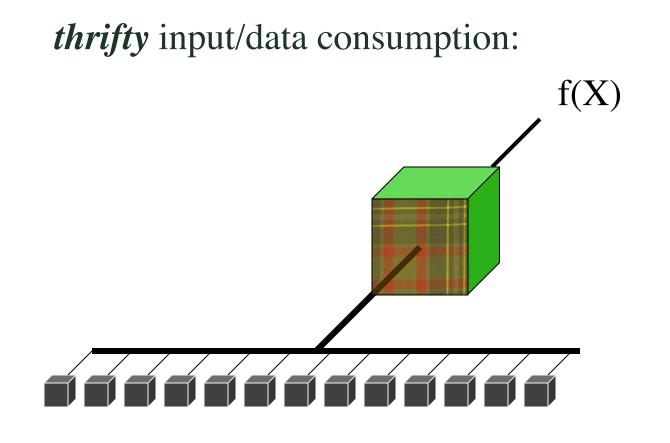
Overview

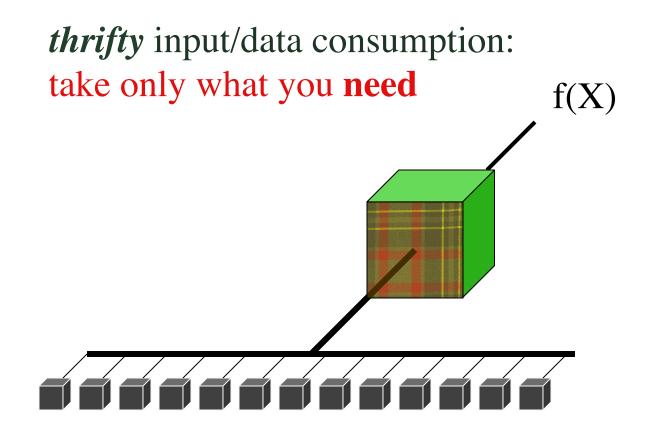












Motivation

Some functions can be computed with less than full precision.

Inputs/data may initially be known up to some limited precision/certainty; greater precision is available, but at additional cost.

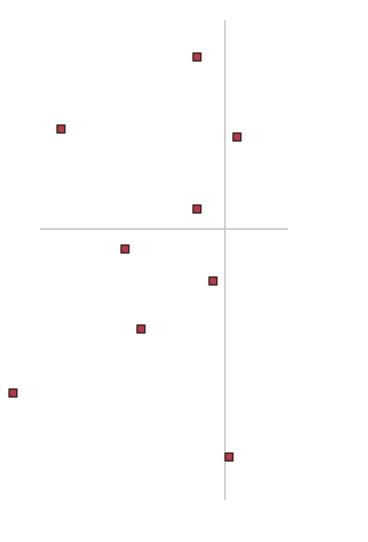
- sensor data
- implicit representation--e.g. root-finding
- hierarchical data structures
- sampling error

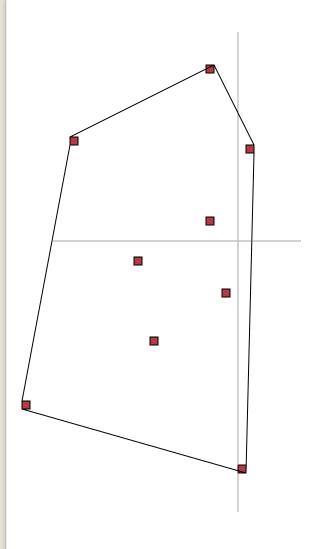
Motivation

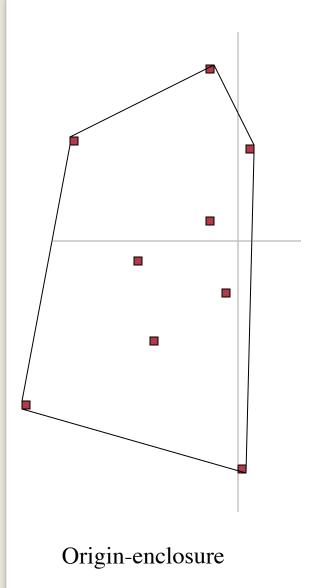
Some functions can be computed with less than full precision.

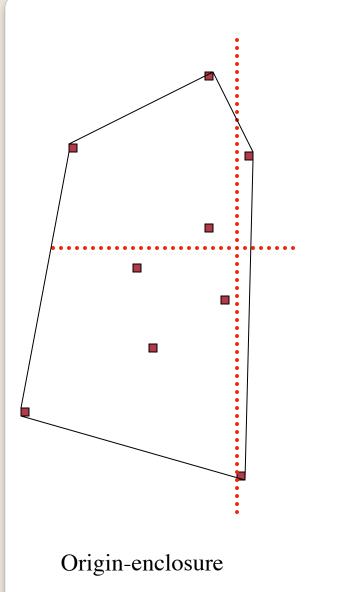
Inputs/data may initially be known up to some limited precision/certainty; greater precision is available, but at additional cost.

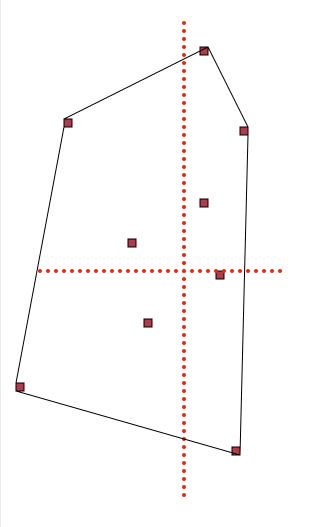
- sensor data
- implicit representation--e.g. root-finding
- hierarchical data structures
- sampling error



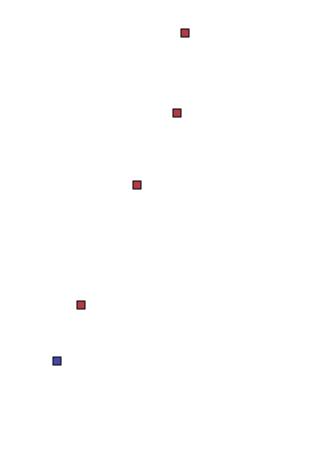




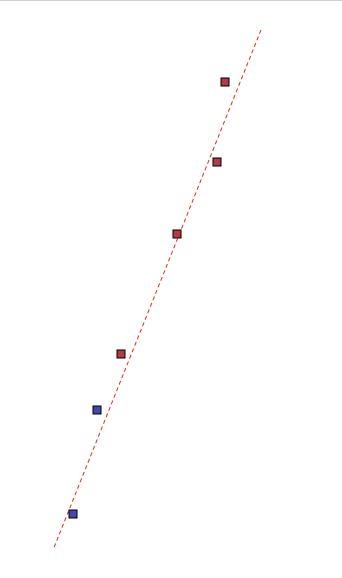




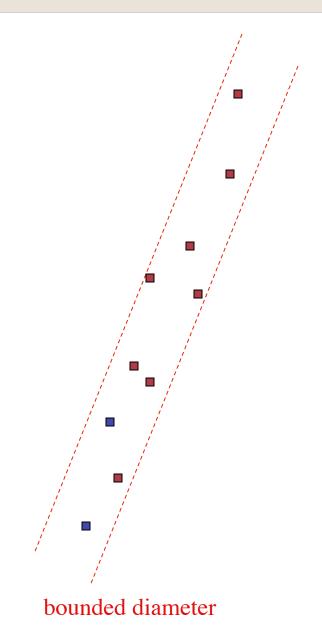
Origin-enclosure

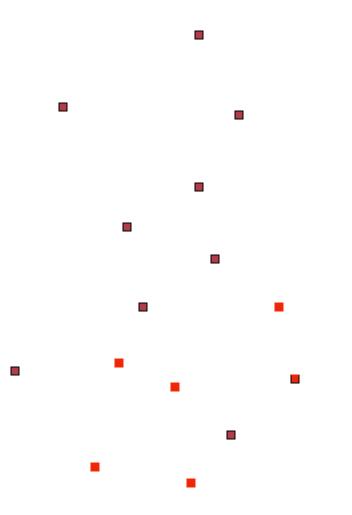


co-linearity (lower dimensionality)

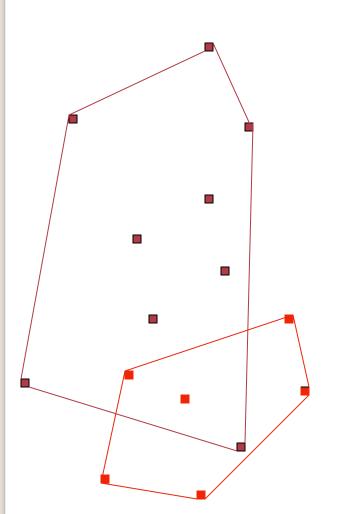


co-linearity (lower dimensionality)

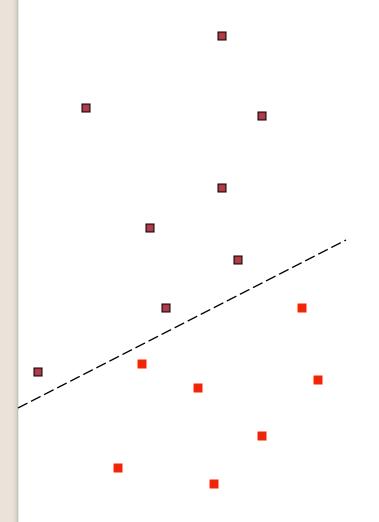




red-blue separability



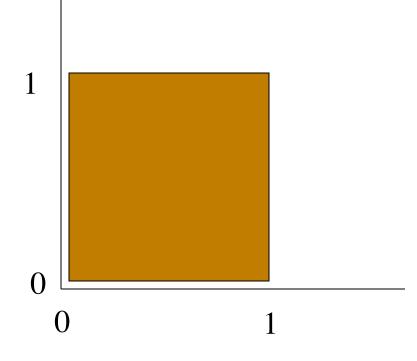
red-blue separability



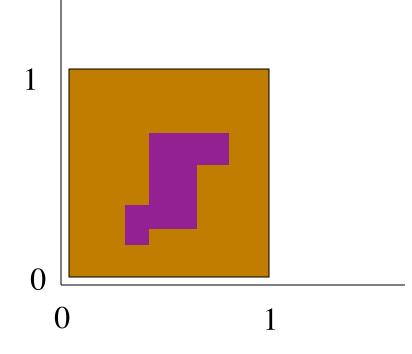
red-blue separability

Model (operations)

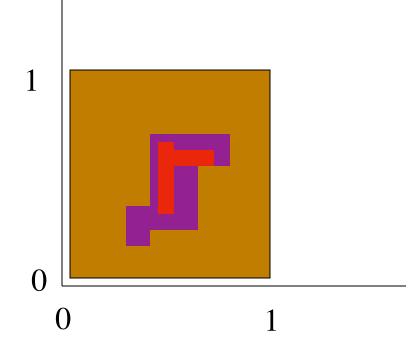
Arbitrary refinement of uncertainty regions



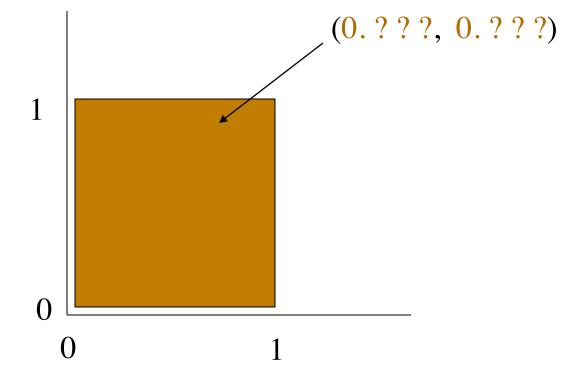
Arbitrary refinement of uncertainty regions



Arbitrary refinement of uncertainty regions

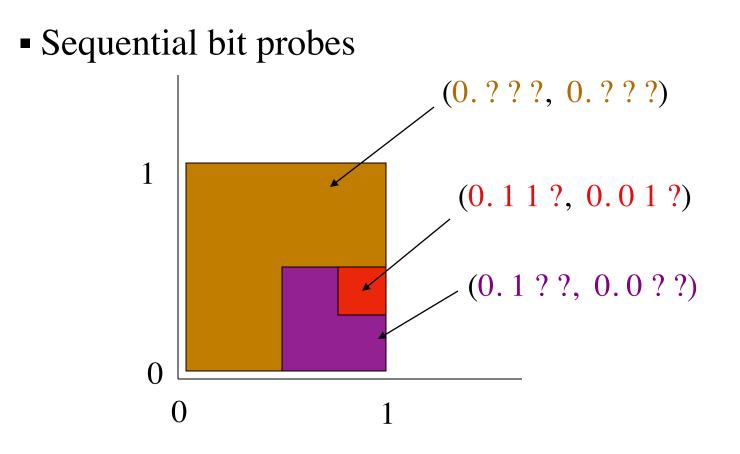


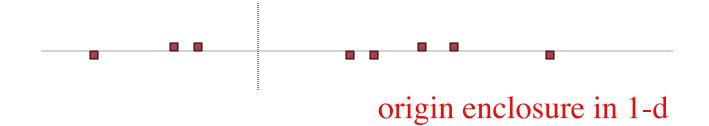
Sequential bit probes



Sequential bit probes (0.???, 0.???)1 (0.1??, 0.0??)0

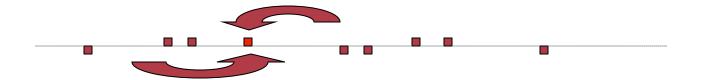
0





origin enclosure in 1-d

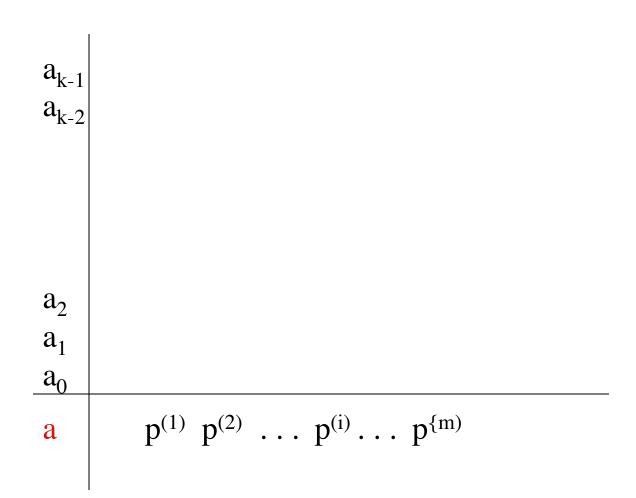
1-d origin enclosure: given *n* numbers $p^{(1)}, p^{(2)}, \dots, p^{(n)}$, find a pair $p^{(i)}, p^{(j)}$ that bracket a given number *a*. (i.e. show $p^{(i)} < a < p^{(j)}$, for some *i*, *j*.)

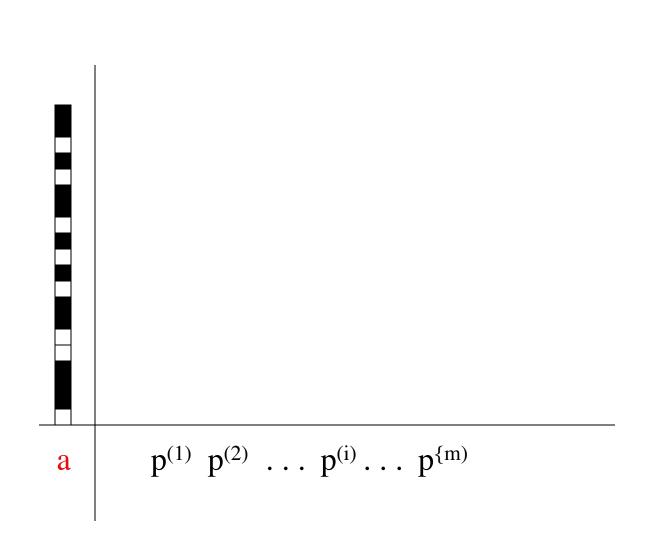


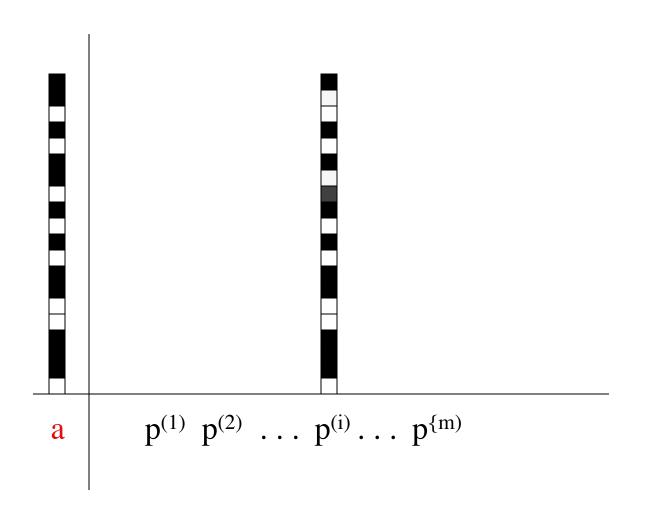
- Introduction and motivation Input-thrifty algorithms
- List search
- Hyperbolic dovetailing
- Applications to input-thrifty algorithms
- Extensions & generalizations

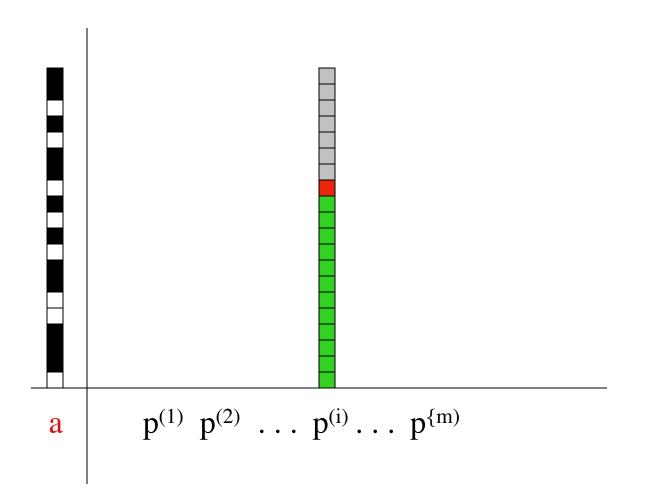
Overview

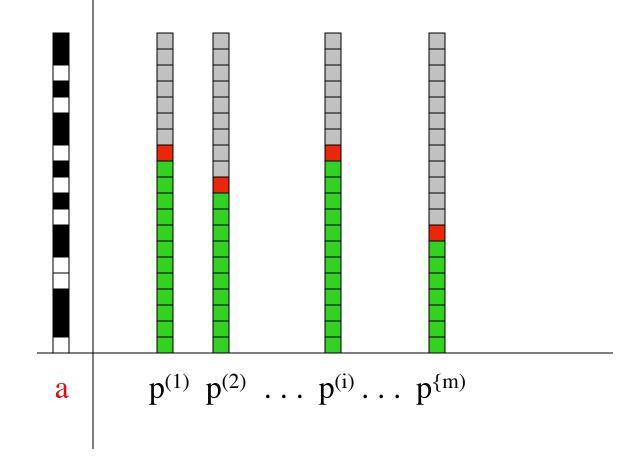
A. Given *m* numbers $p^{(1)}, p^{(2)}, \dots, p^{(m)}$, identify at least one that *differs* from a given number *a*. (i.e. show $p^{(i)} > a$ or $p^{(i)} < a$, for some *i*.)





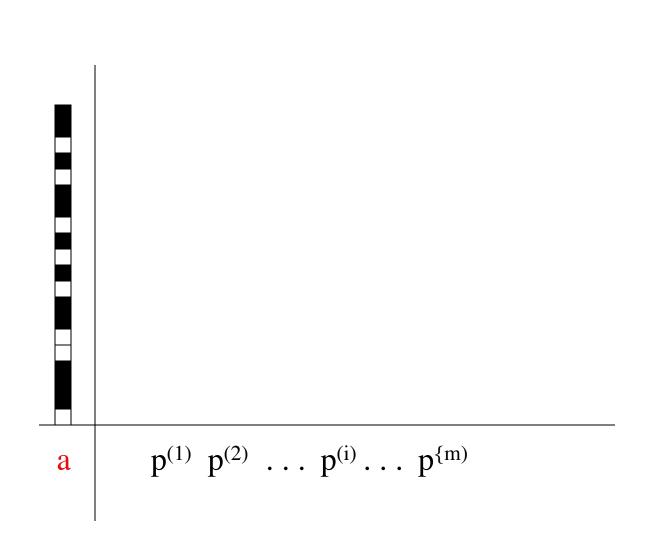


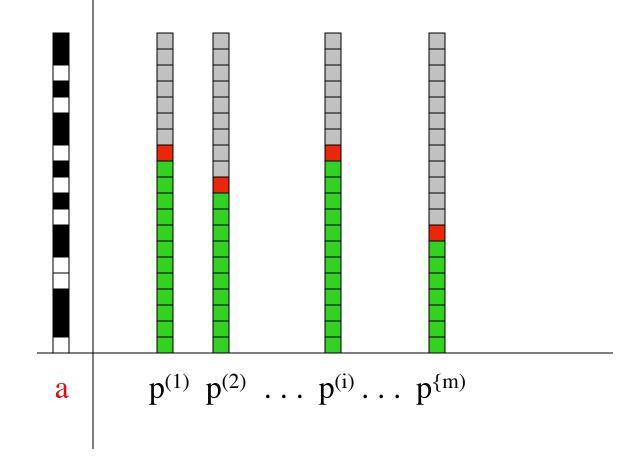


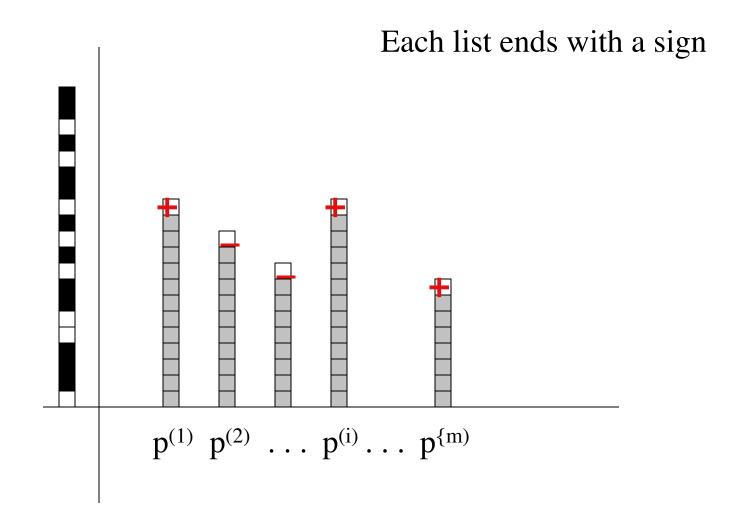


B. Origin enclosure: given *n* numbers $p^{(1)}, p^{(2)}, \dots, p^{(m)}$, find a pair $p^{(i)}, p^{(j)}$ that bracket a given number *a*. (i.e. show $p^{(i)} < a < p^{(j)}$, for some *i*, *j*.)

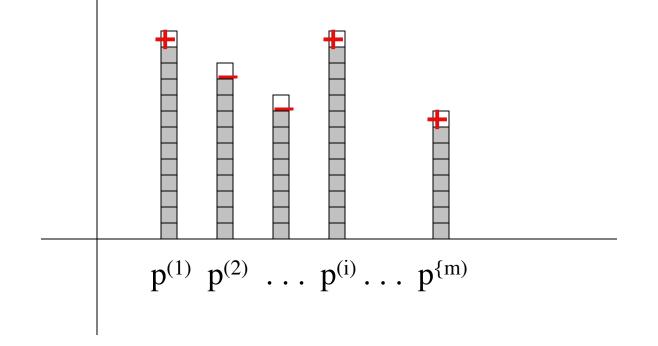
B. Origin enclosure: given *n* numbers $p^{(1)}, p^{(2)}, ..., p^{(m)}$, find a pair $p^{(i)}, p^{(j)}$ that bracket a given number *a*. (i.e. show $p^{(i)} < a < p^{(j)}$, for some *i*, *j*.)

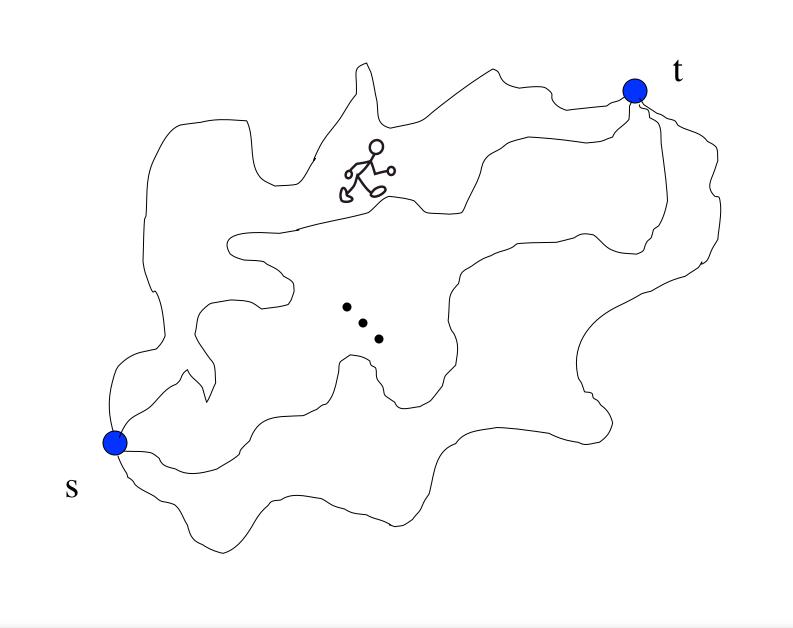






Each list ends with a sign Search for one of each type

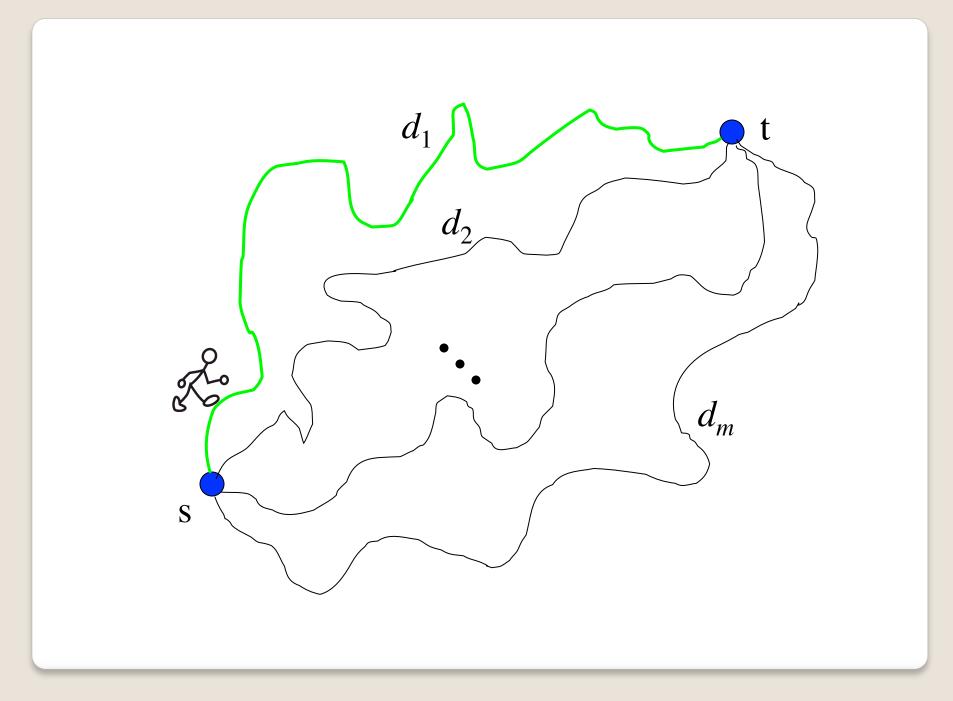


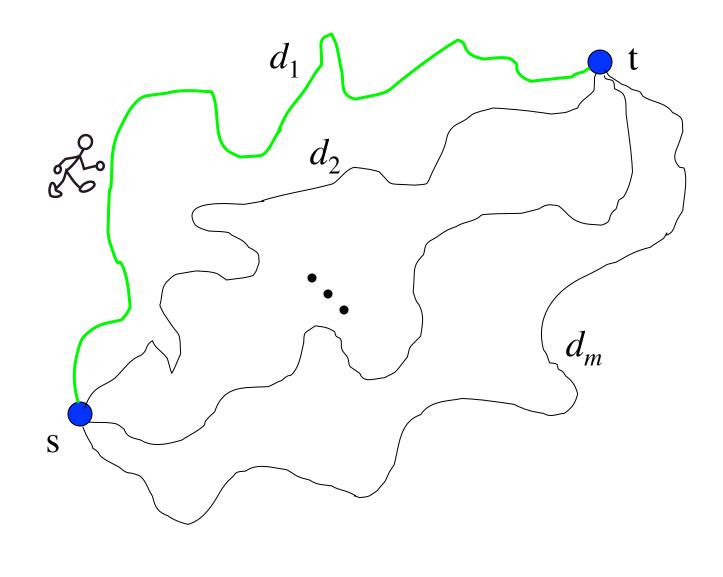


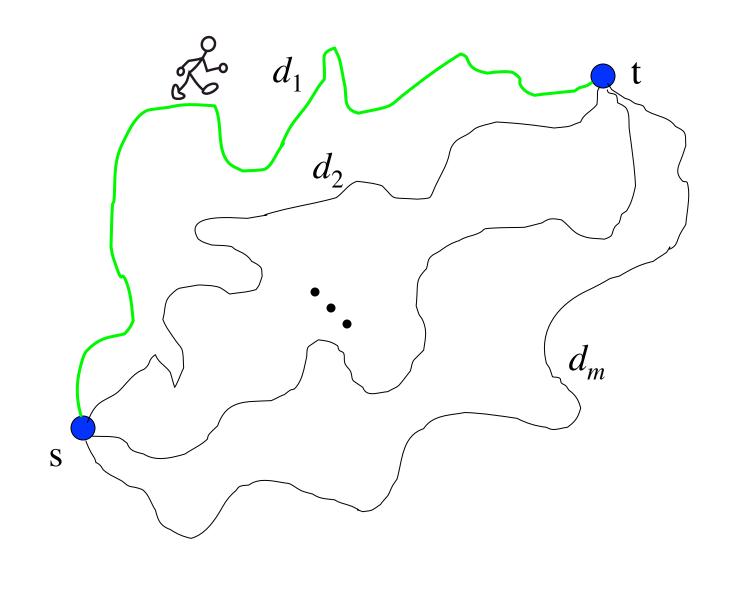
Objective: Walk from *s* to *t* as efficiently as possible.

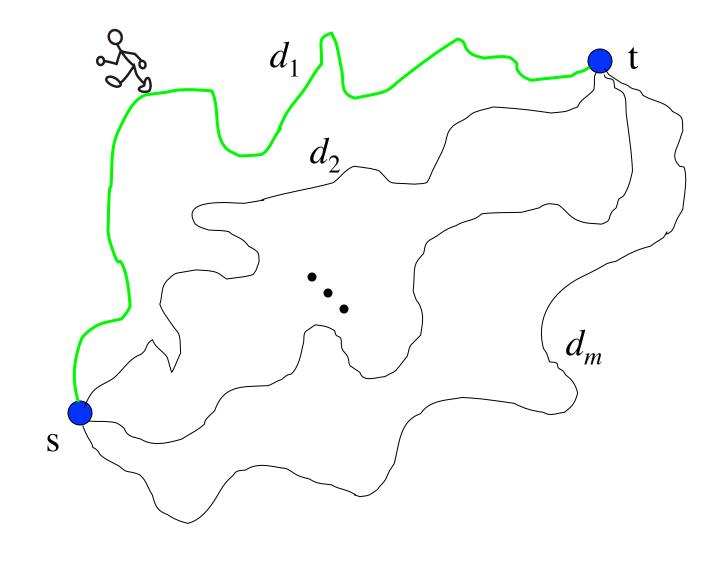
Objective: Walk from *s* to *t* as efficiently as possible.

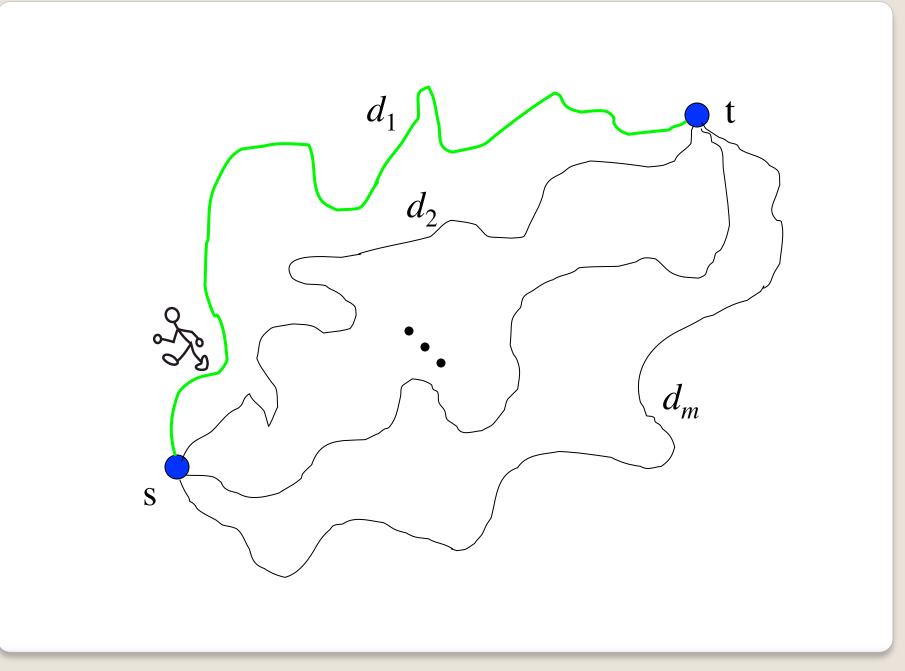
Problem: The individual path lengths $d_1, d_2, ..., d_m$ are not known!

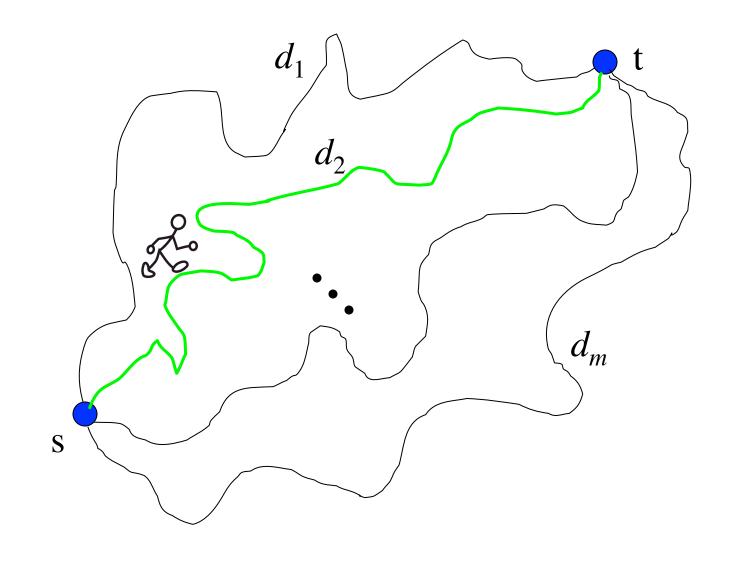


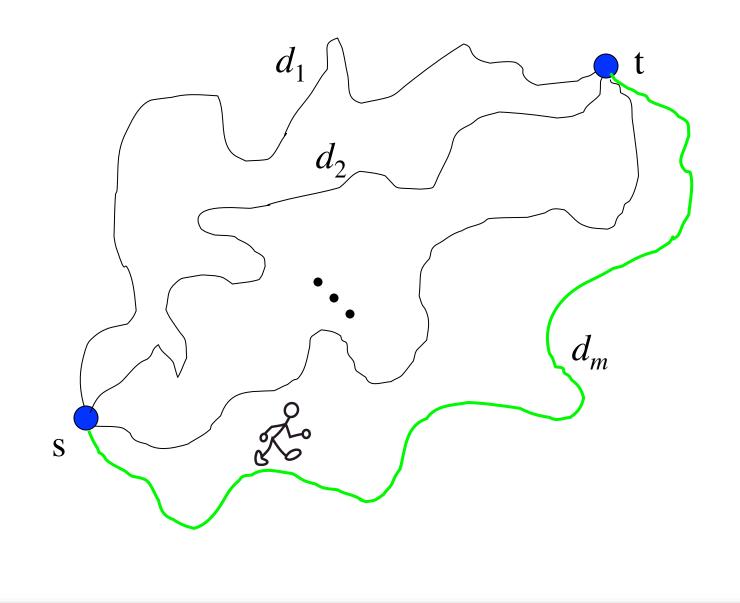












How do we decide ...

* when to turn around?

How do we decide ...

* when to turn around?

* which path to explore next?

How do we evaluate a strategy?

* worst case...

How do we evaluate a strategy?

* worst case... all strategies are horrible!

How do we evaluate a strategy?

* worst case... all strategies are horrible!

* competitive analysis behaviour should reflect *intrinsic complexity* of input

* search games [Gal '80]

* geometric search in unknown environments [Papadimitriou et al. '89, Fleischer et al. '04]

* randomized/heuristic algorithm design [Luby et al. '93, Kao et al.' 98]

* search games [Gal '80]

* geometric search in unknown environments [Papadimitriou et al. '89, Fleischer et al. '04]

* randomized/heuristic algorithm design [Luby et al. '93, Kao et al.'98]

* search games [Gal '80]

* geometric search in unknown environments [Papadimitriou et al. '89, Fleischer et al. '04]

* randomized/heuristic algorithm design [Luby et al. '93, Kao et al.' 98]

* search games [Gal '80]

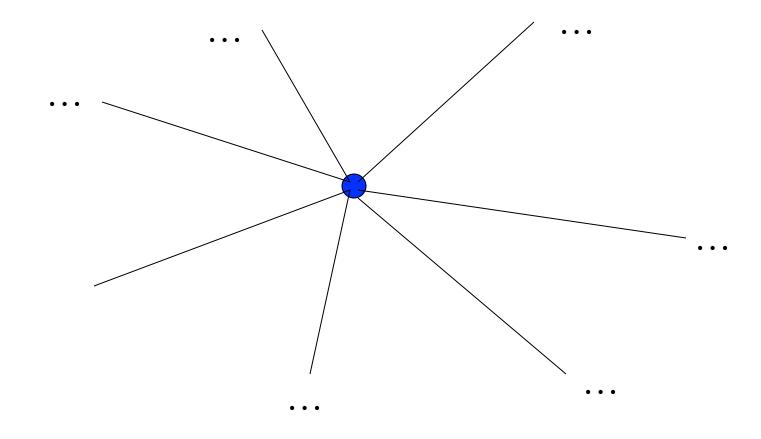
* geometric search in unknown environments [Papadimitriou et al. '89, Fleischer et al. '04]

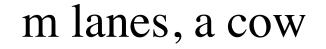
* randomized/heuristic algorithm design [Luby et al. '93, Kao et al. '98]

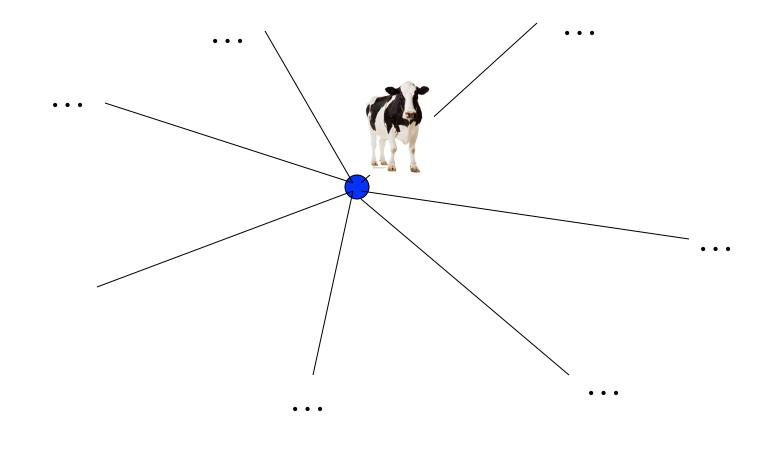
* search games [Gal '80]

- * geometric search in unknown environments [Papadimitriou et al. '89, Fleischer et al. '04]
- * randomized/heuristic algorithm design [Luby et al. '93, Kao et al. '98]

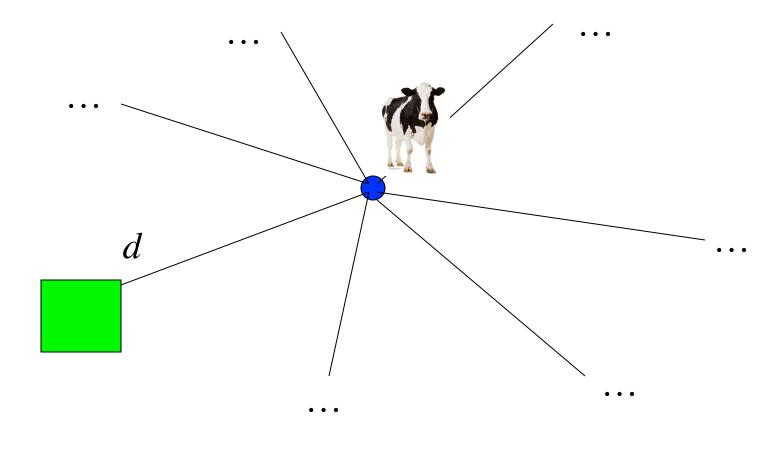
This seems vaguely familiar...



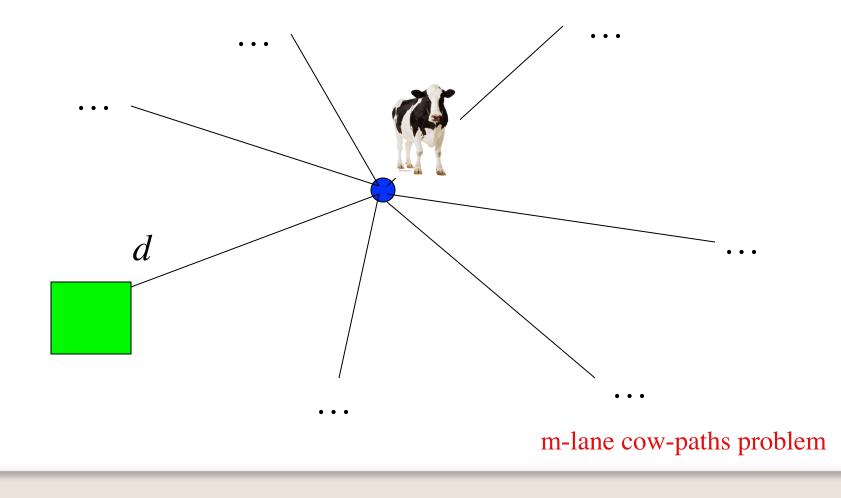




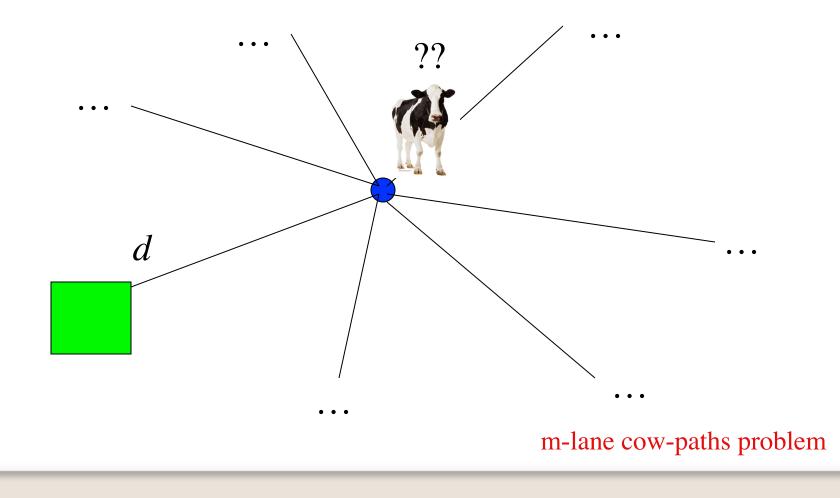
m lanes, a cow and a pasture

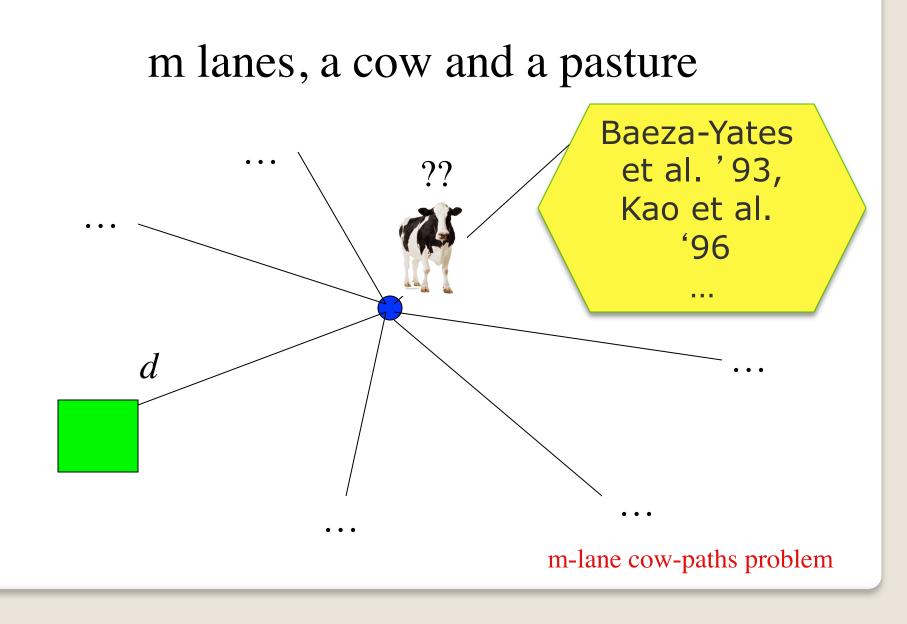


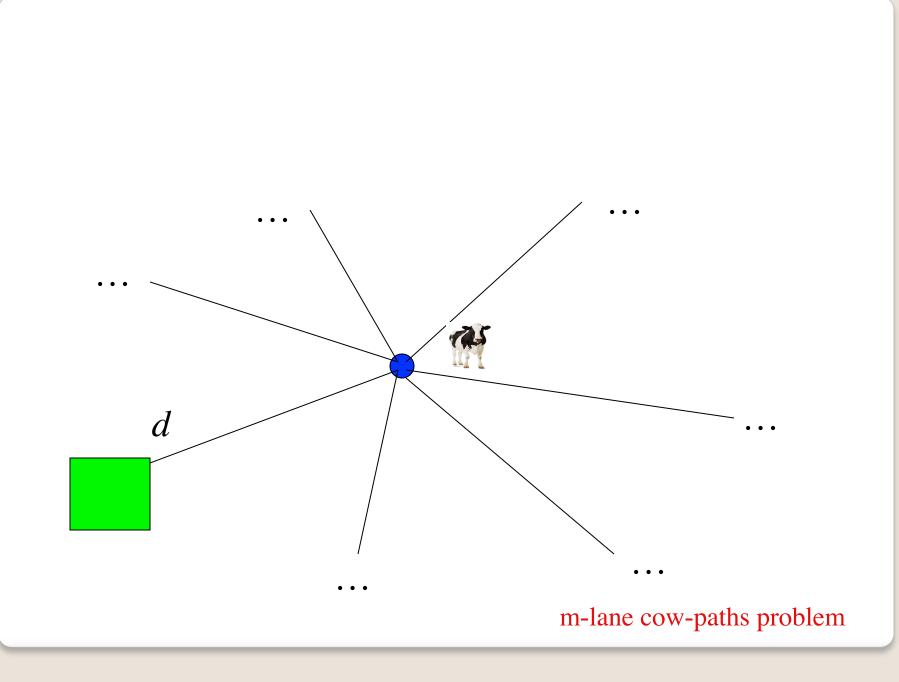
m lanes, a cow and a pasture

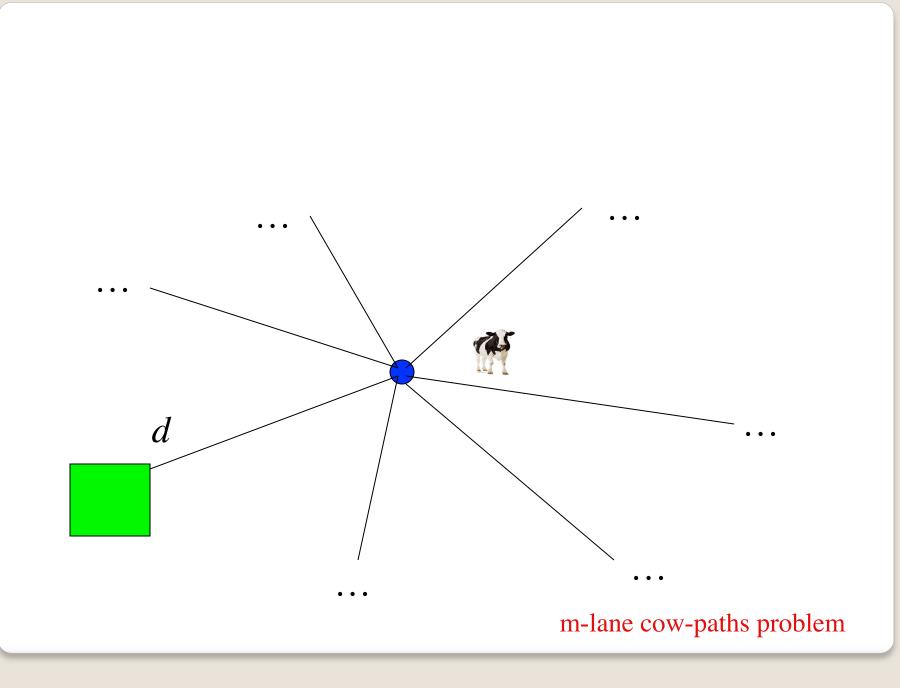


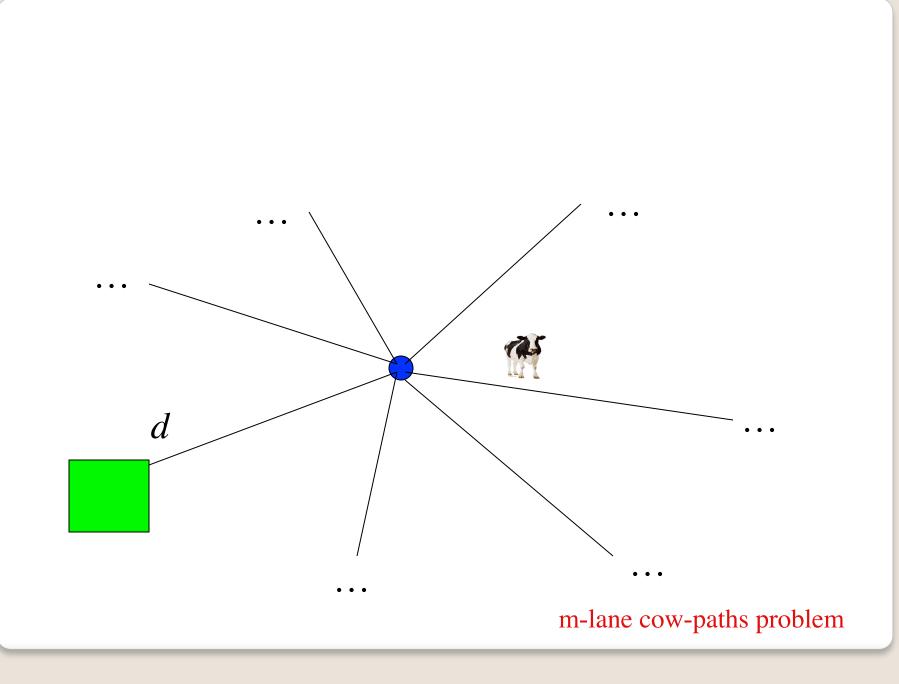
m lanes, a cow and a pasture

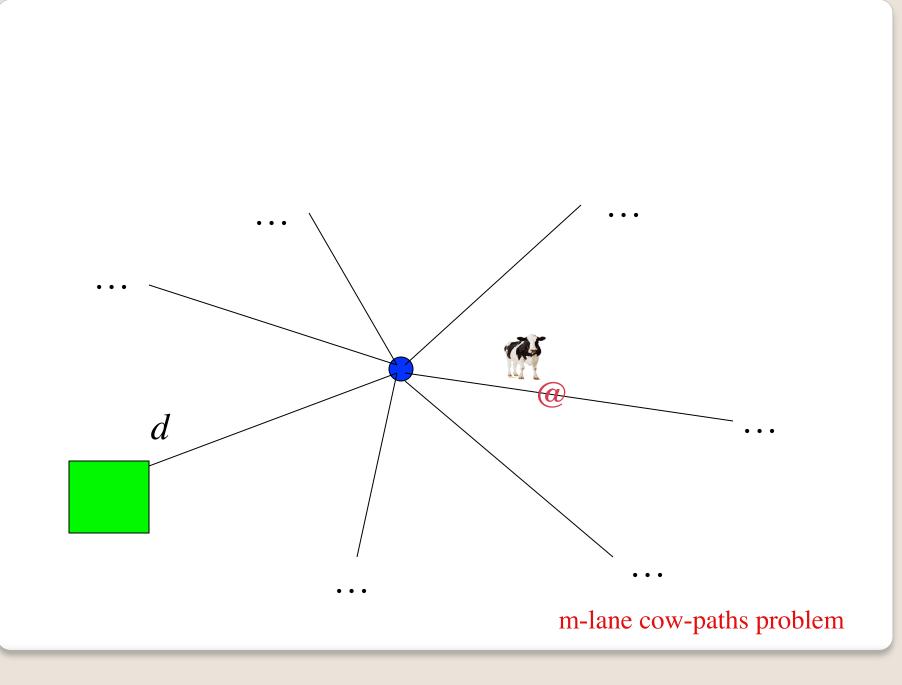


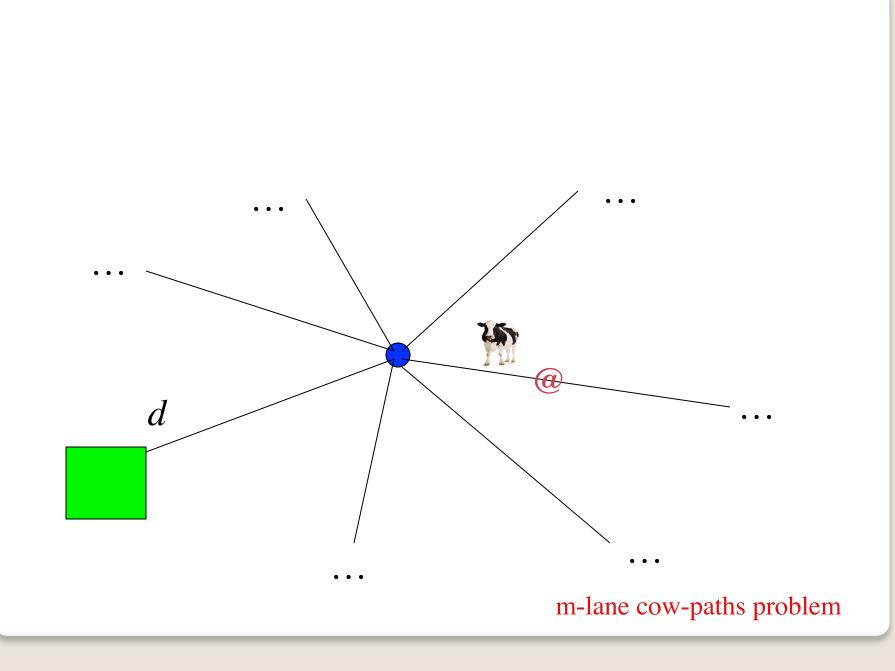


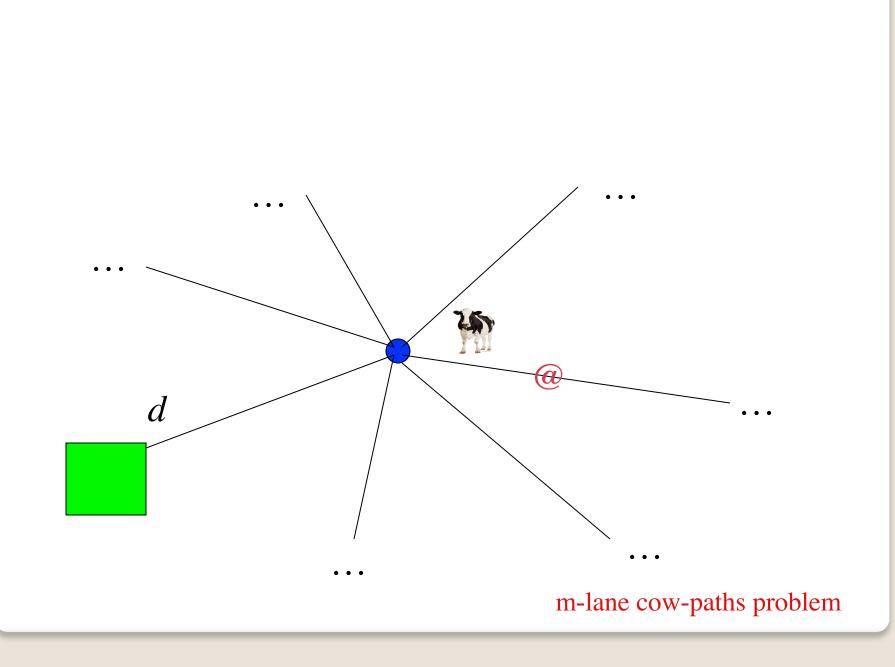


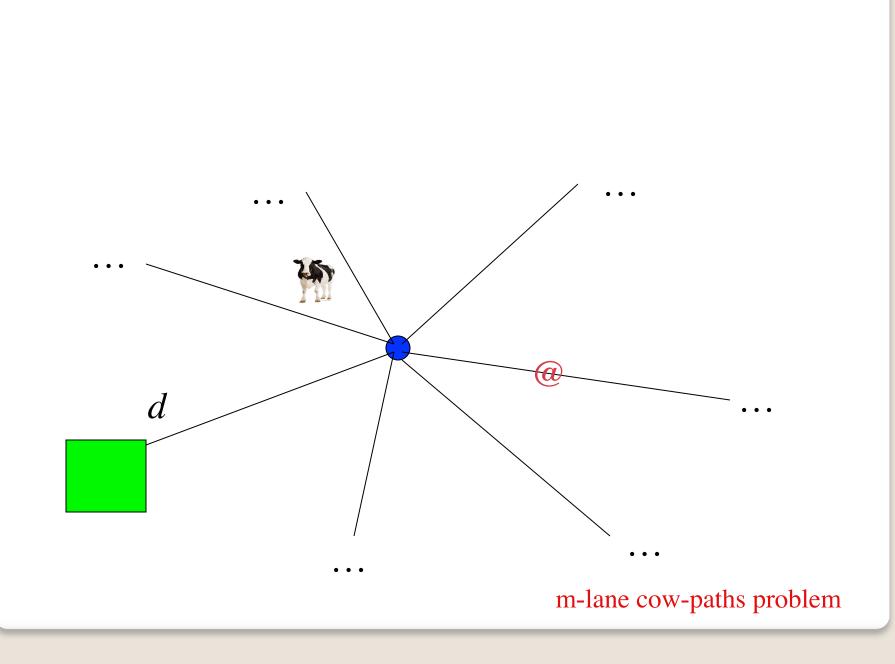


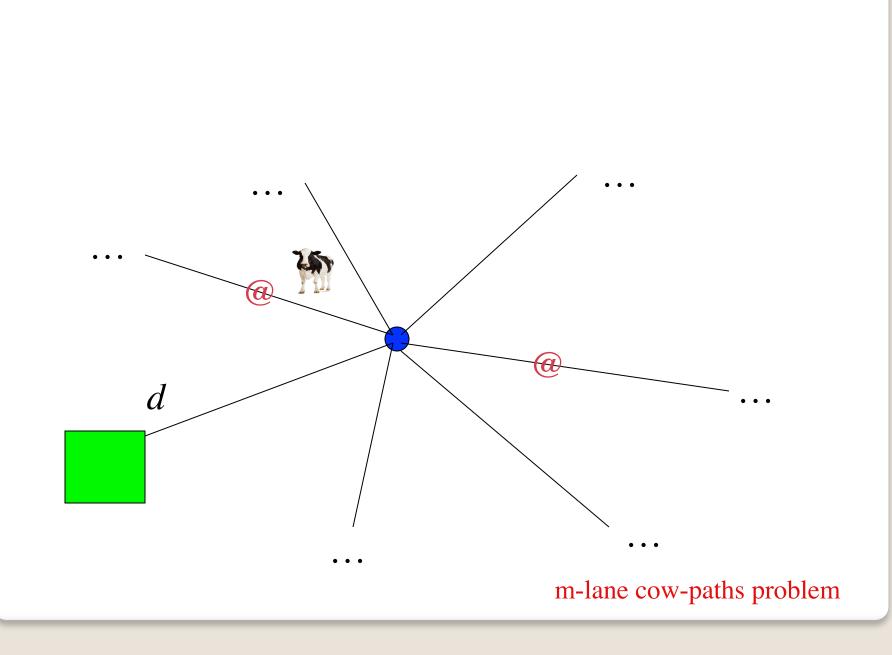


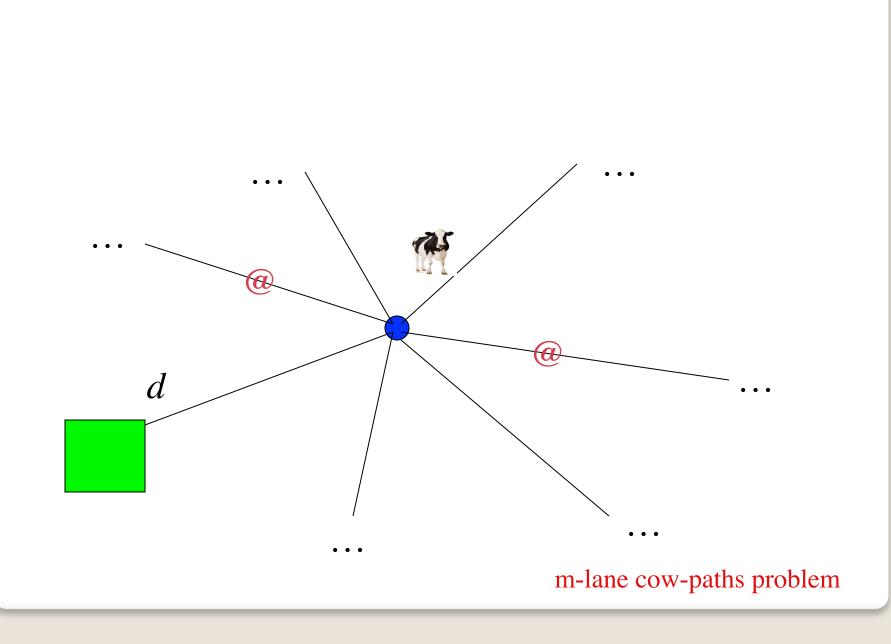


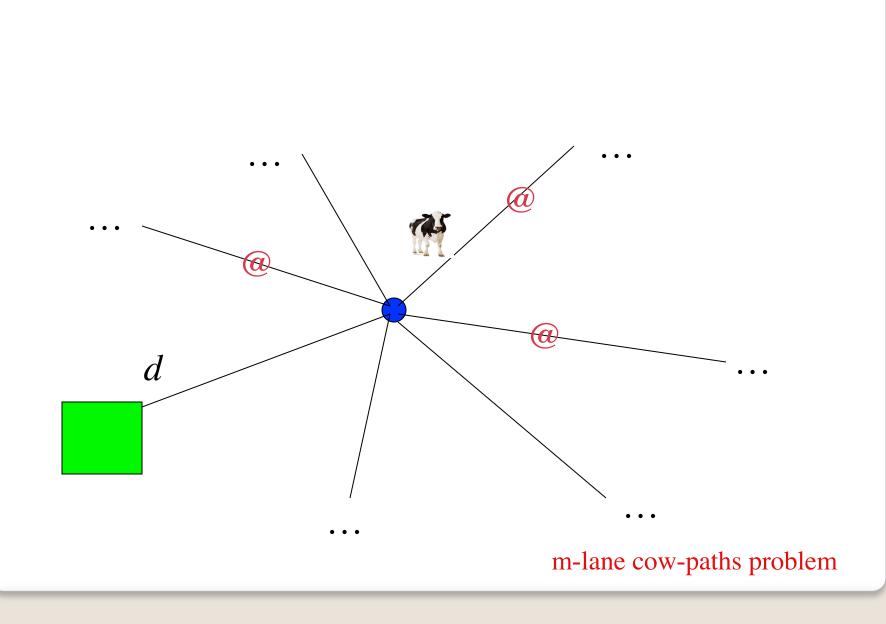


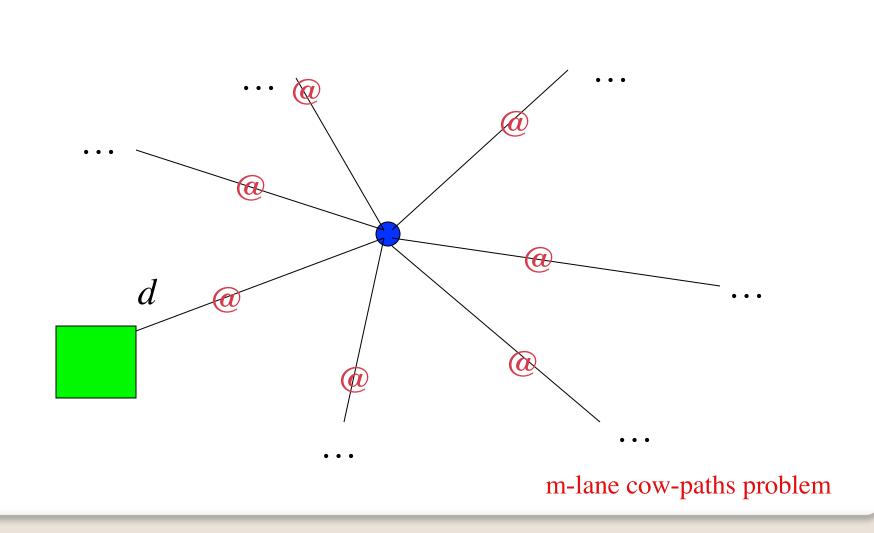


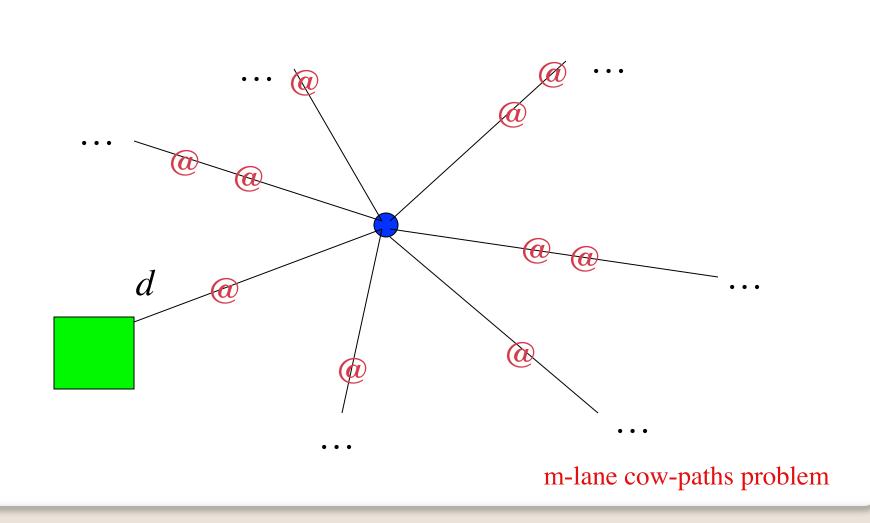


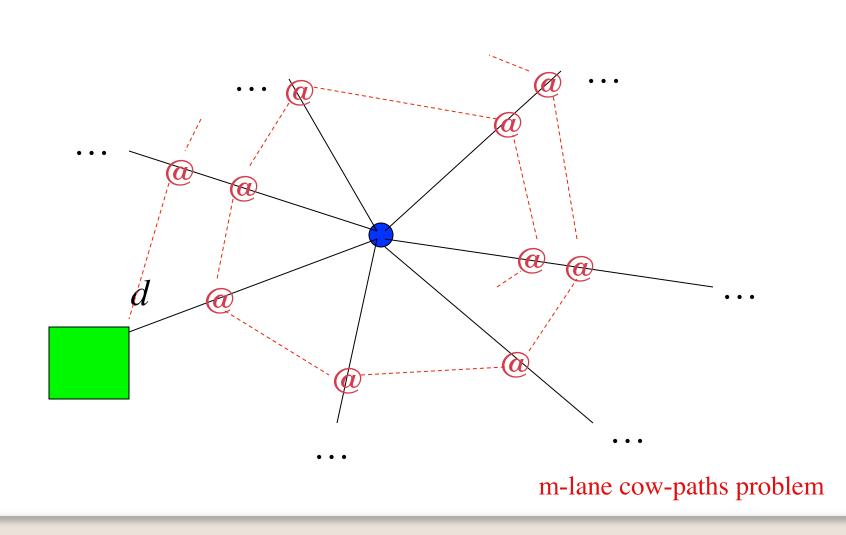




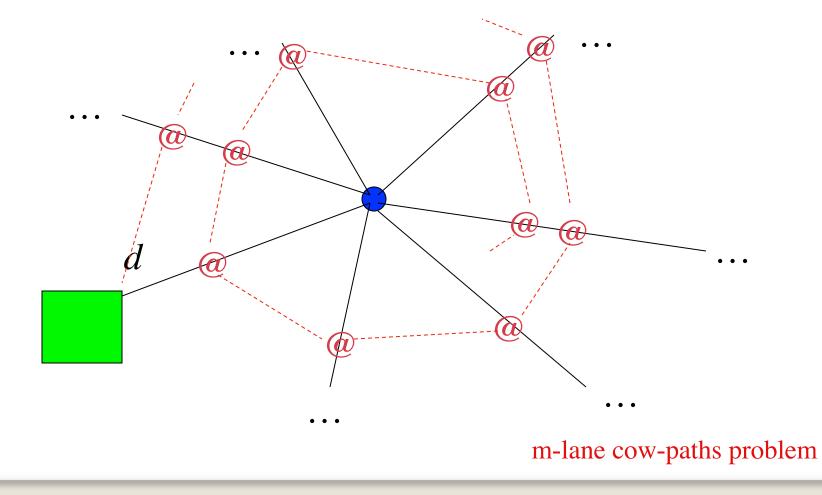








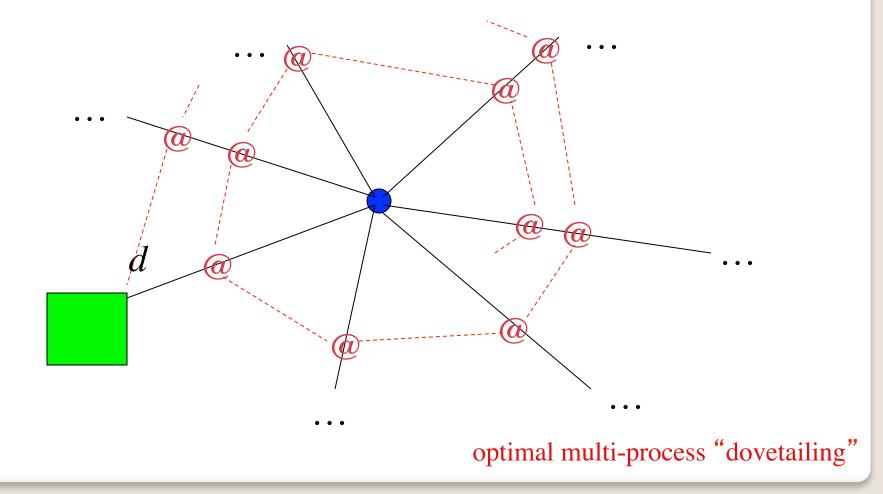
"spiraling" breadth-first (equitable) search



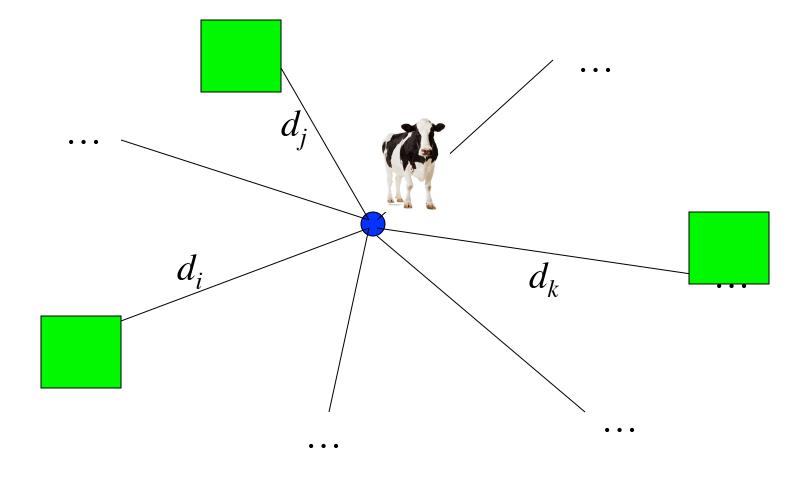
remains optimal under a variety of cost models

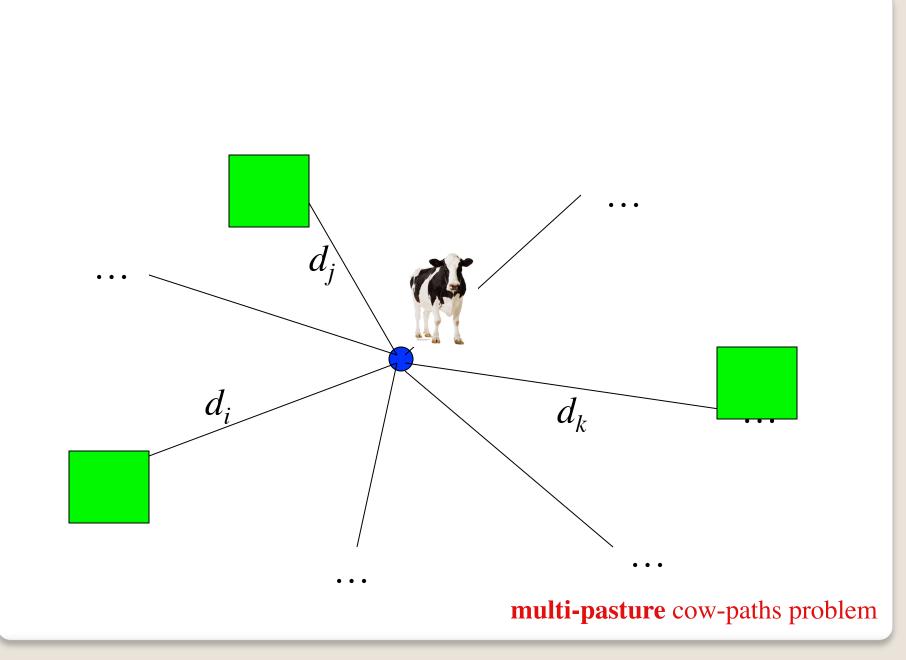


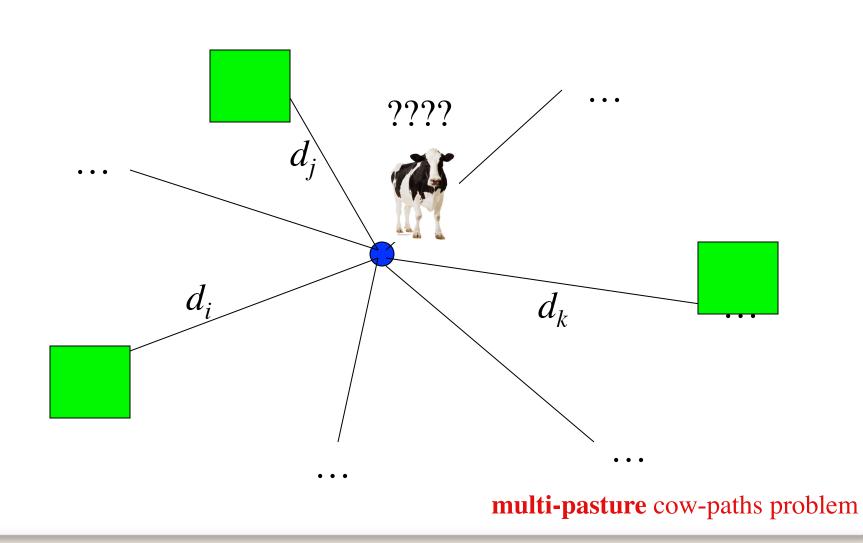
remains optimal under a variety of cost models

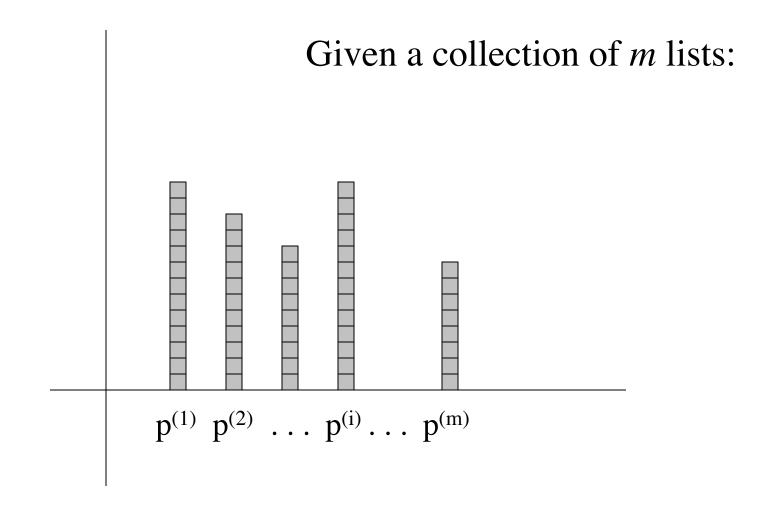


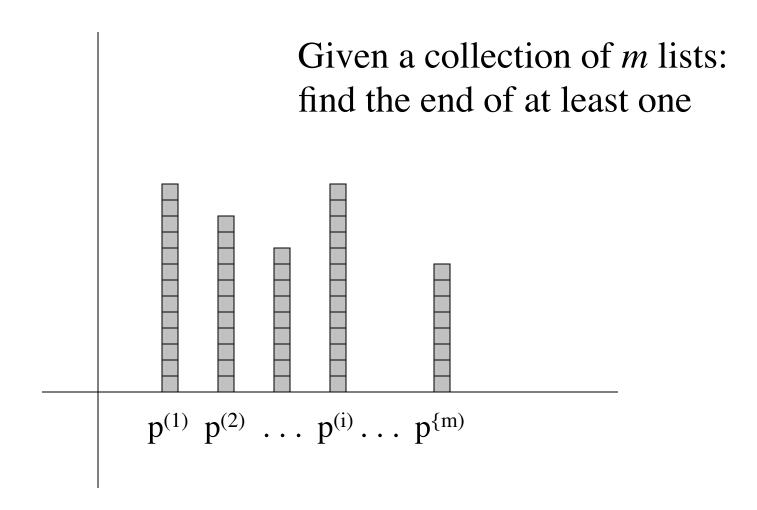
What if there is more than one pasture?

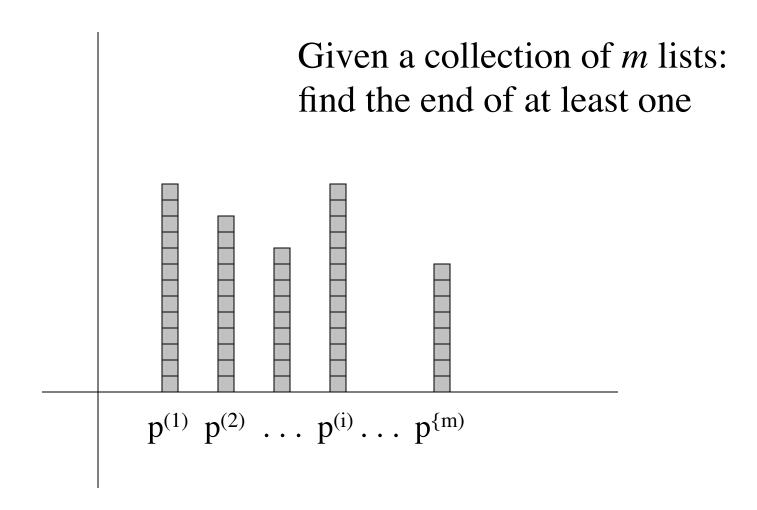


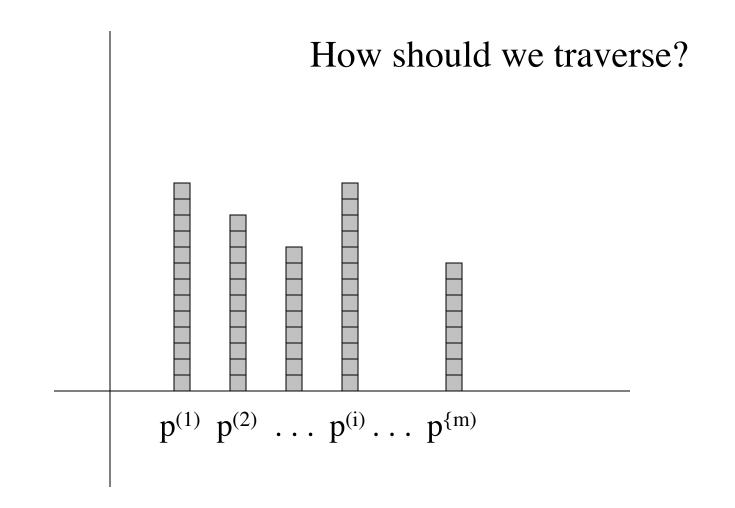


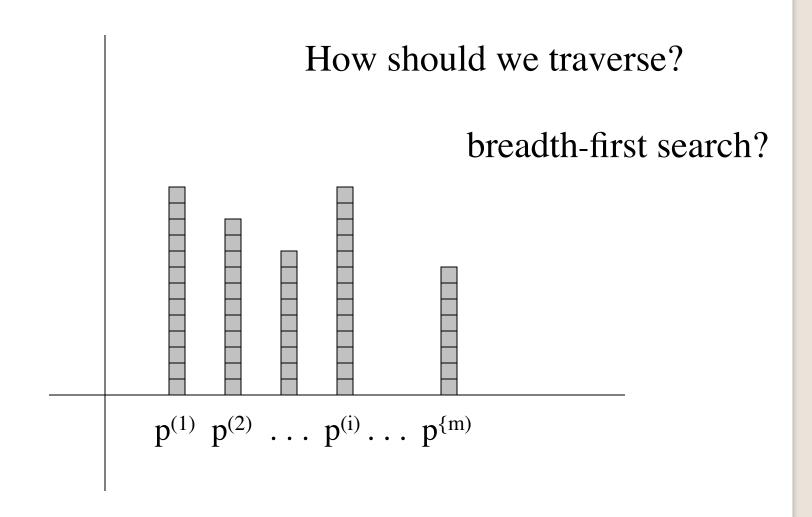


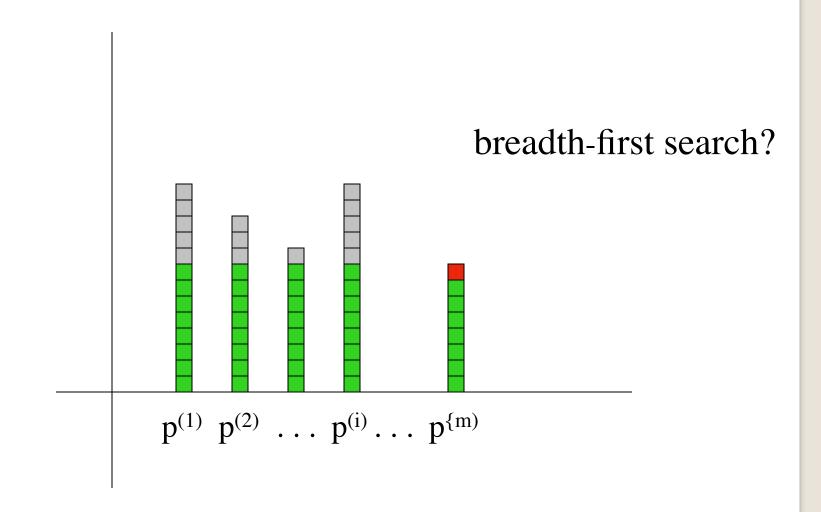


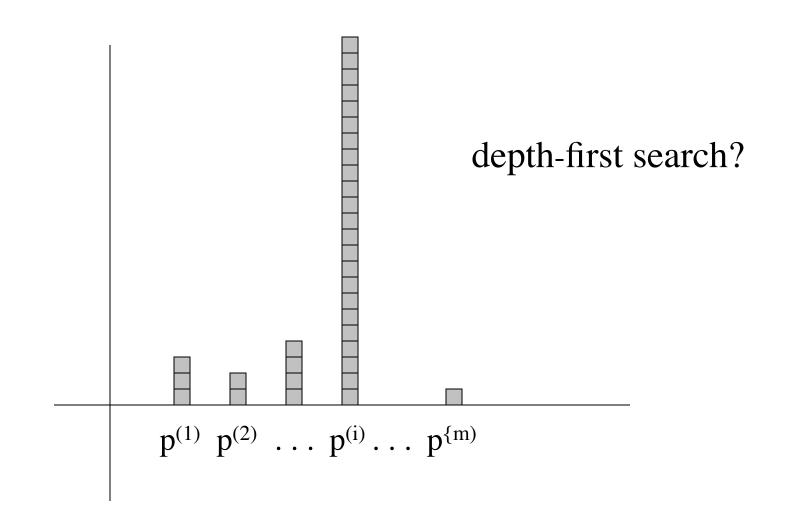


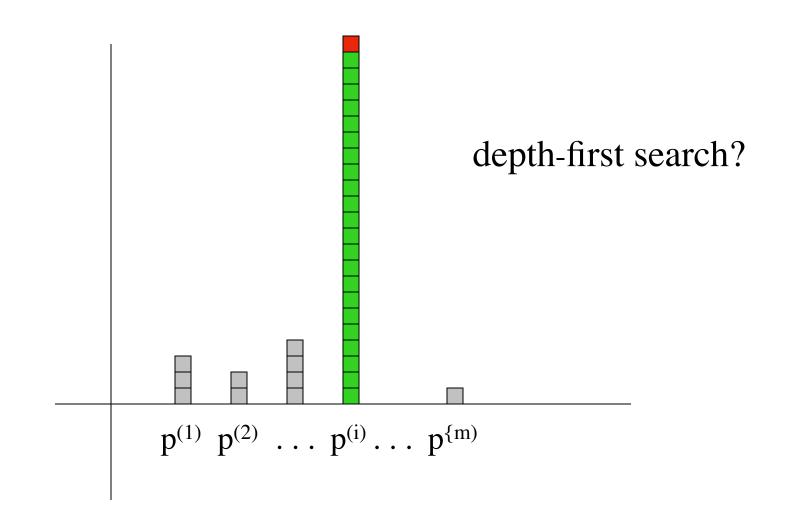








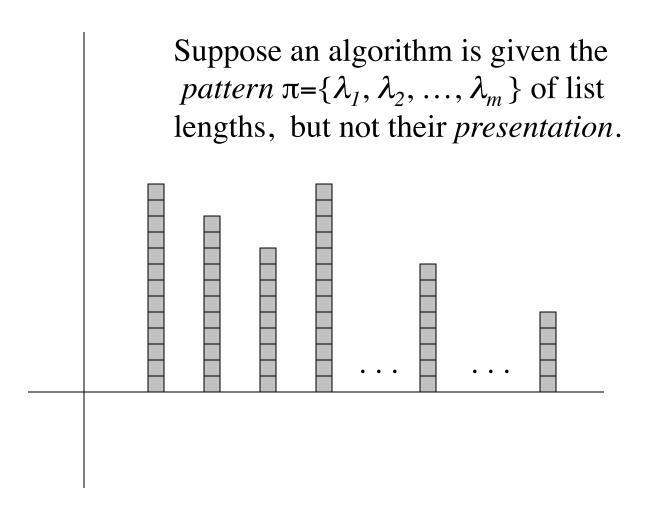


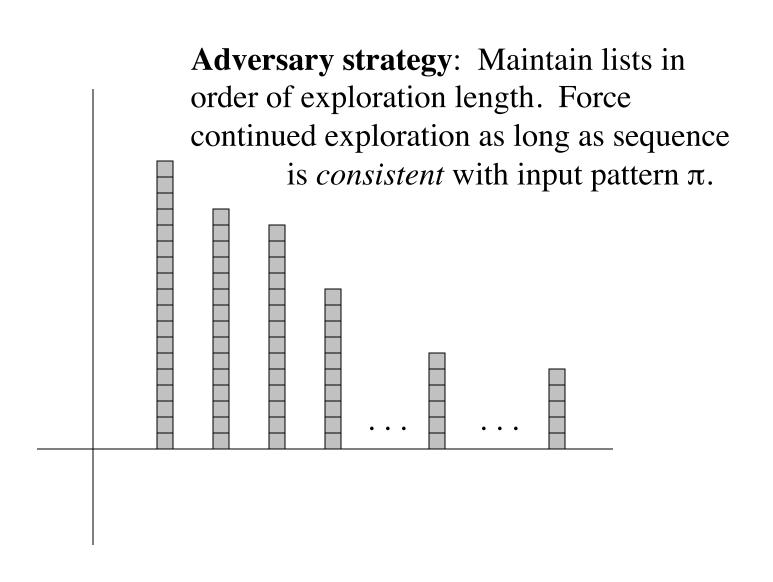


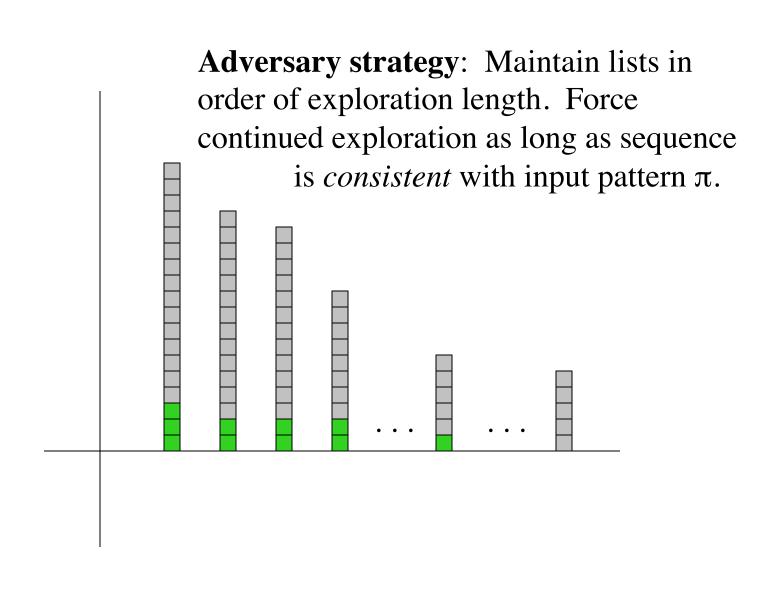
Both breadth-first and depth-first search can be *arbitrarily bad*

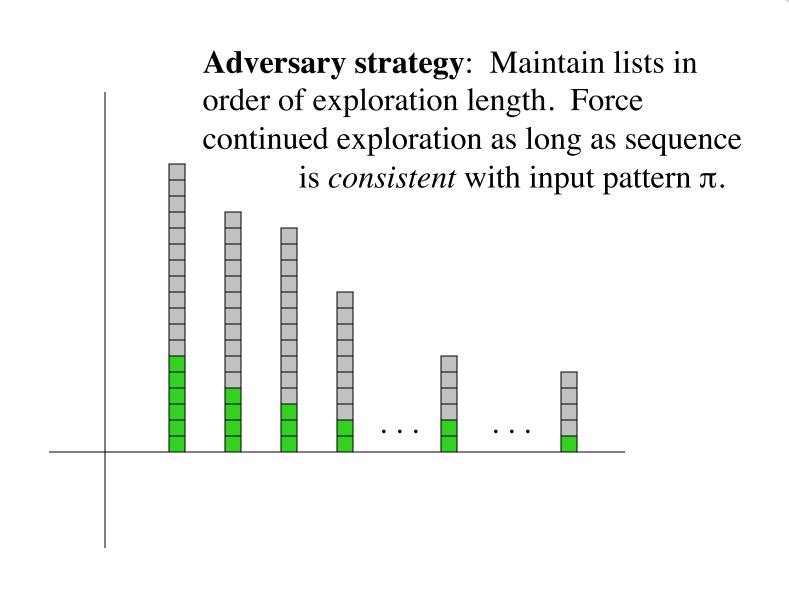
Both breadth-first and depth-first search can be *arbitrarily bad -- relative to the size of the shortest certificate*. Both breadth-first and depth-first search can be *arbitrarily bad -- relative to the size of the shortest certificate*.

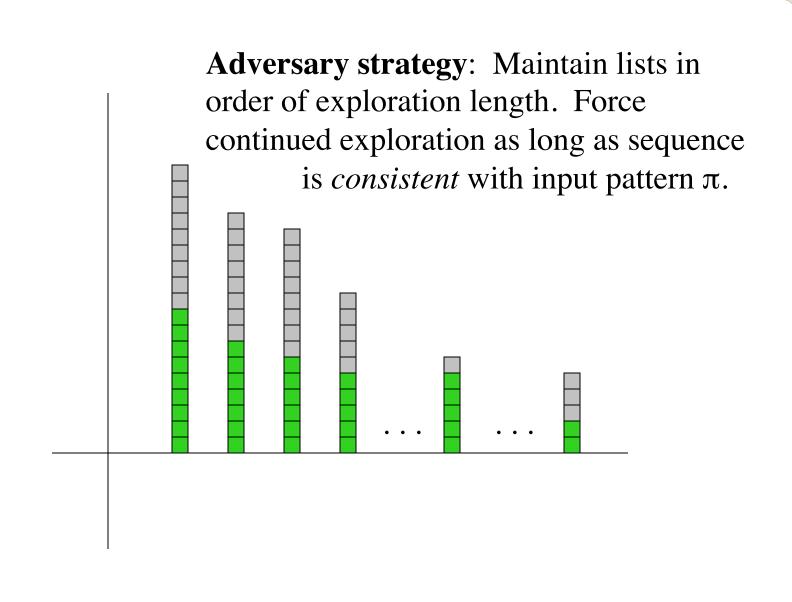
But can we hope to discover short certificates quickly?

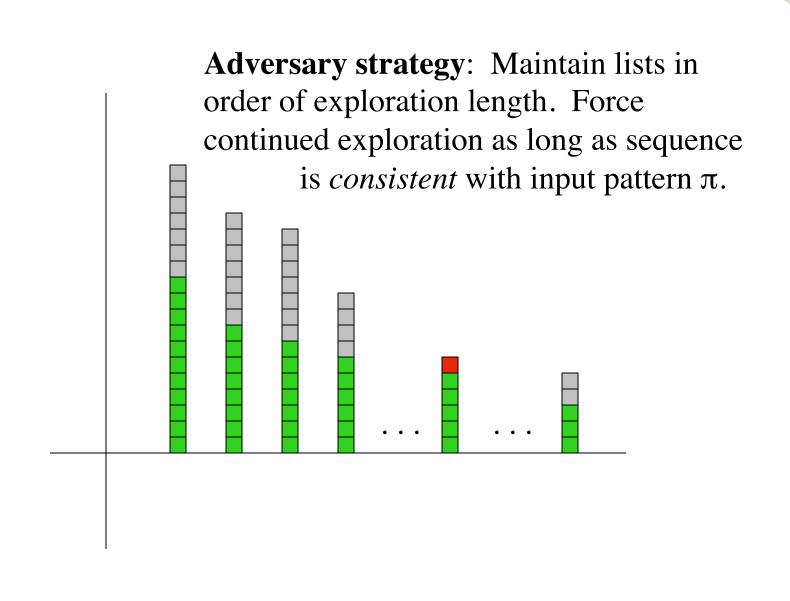


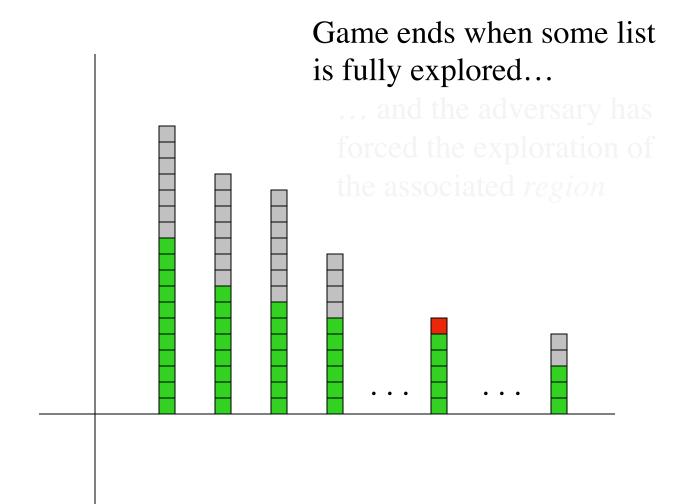


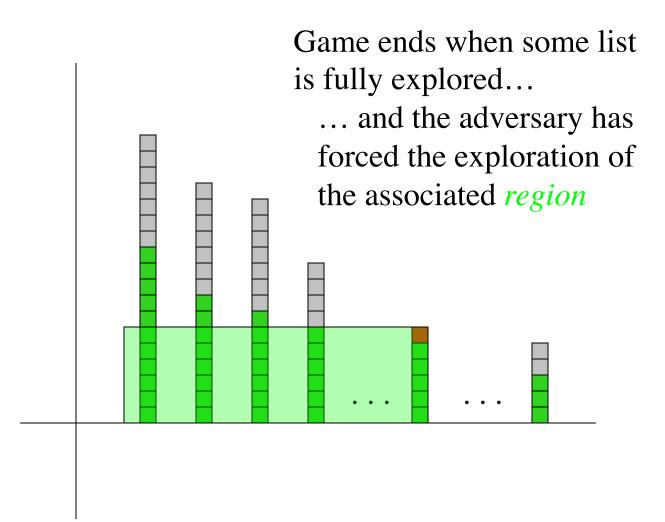


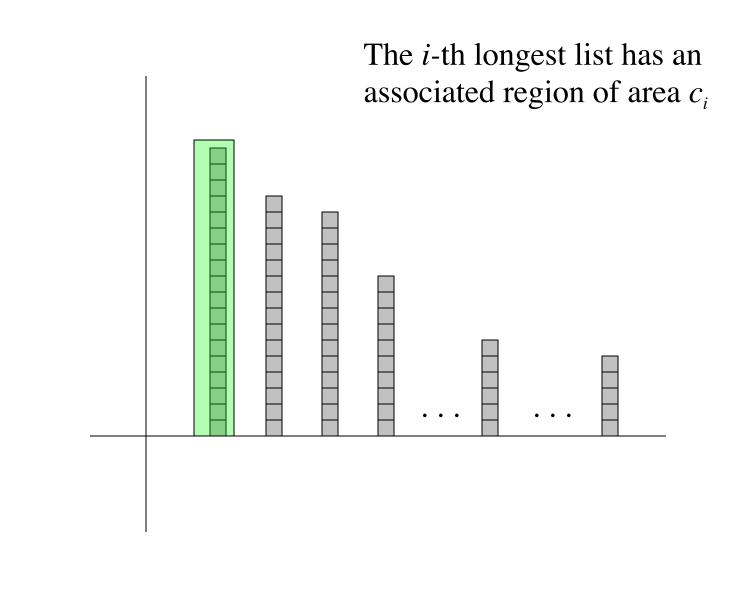


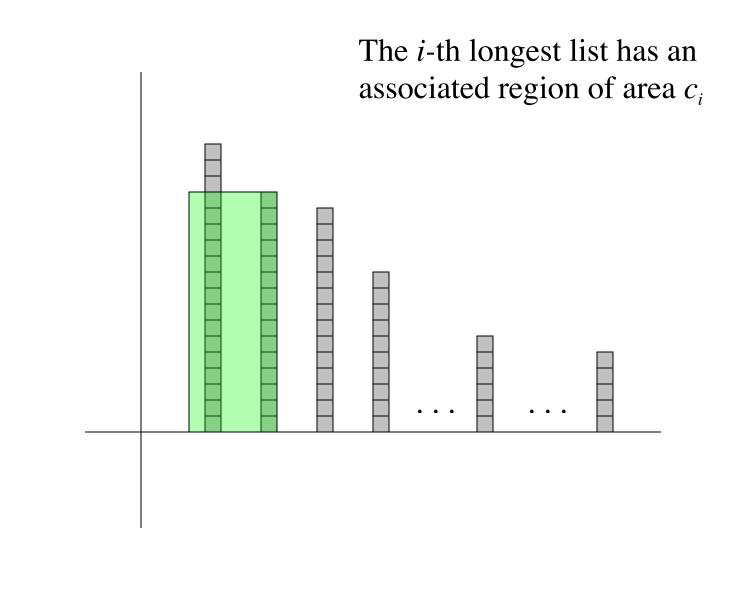


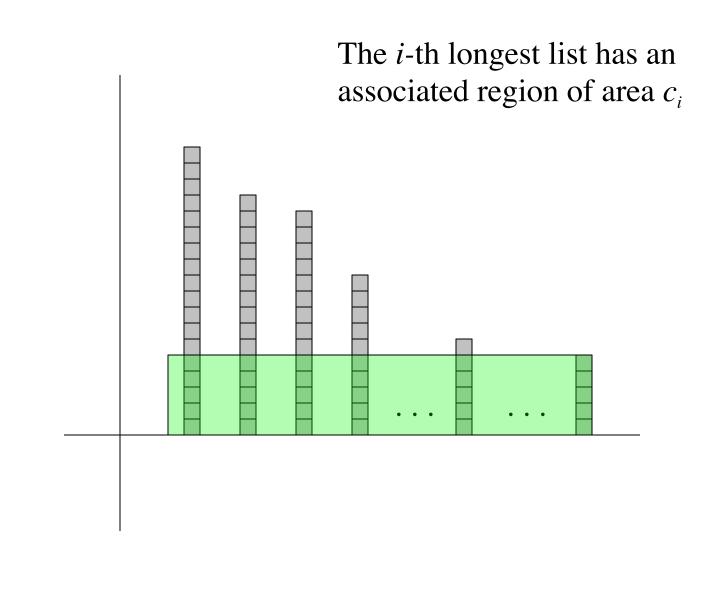


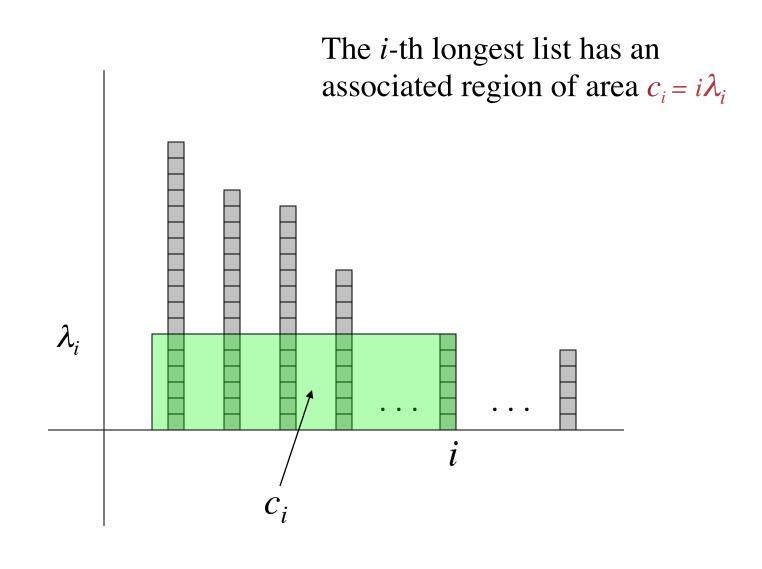




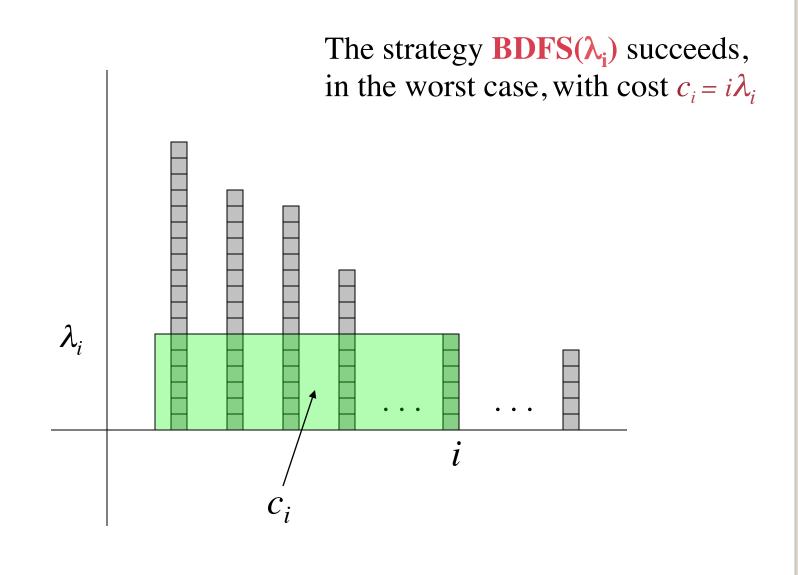








Theorem A1. Any algorithm that solves the list-exploration problem with inputs of pattern π can be forced to make $\min_i \{c_i\}$ steps, *even if the algorithm knows* π . **Theorem A1.** Any algorithm that solves the list-exploration problem with inputs of pattern π can be forced to make $\min_i \{c_i\}$ steps, *even if the algorithm knows* π .



Theorem A1. Any algorithm that solves the list-exploration problem with inputs of pattern π can be forced to make $\min_i \{c_i\}$ steps, *even if the algorithm knows* π .

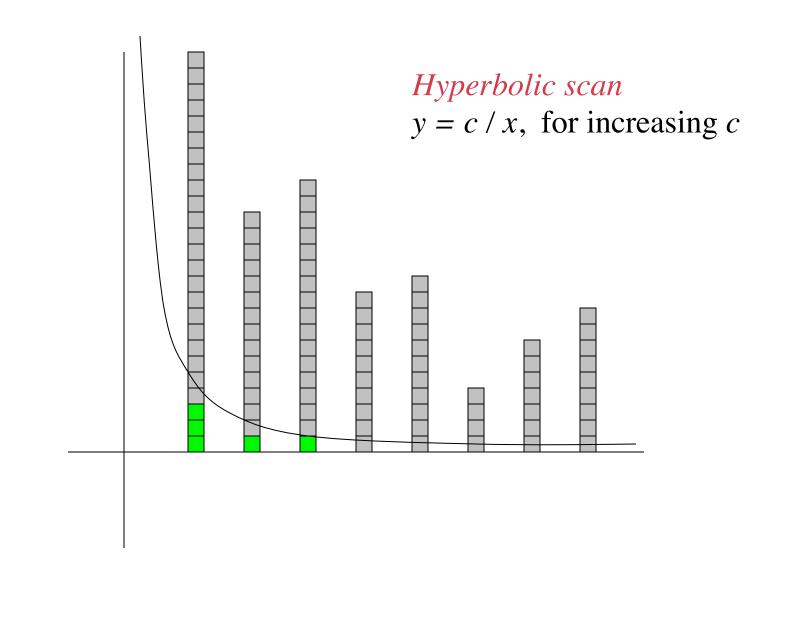
So we refer to $c(\pi) = \min_i \{c_i\}$ as the *intrinsic (worst-case) cost* of the list-exploration problem with input pattern π .

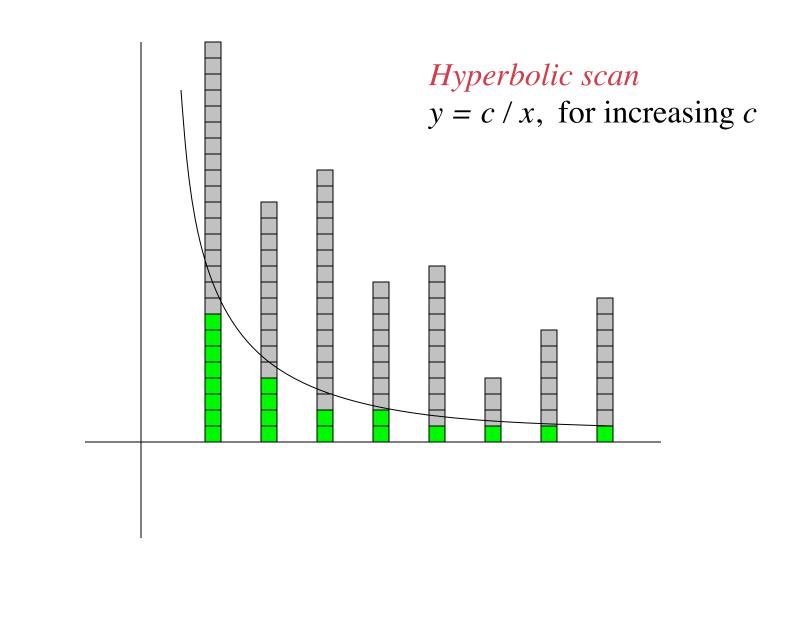
- Introduction and motivation Input-thrifty algorithms
- List search
- Hyperbolic dovetailing
- Applications to input-thrifty algorithms
- Extensions & generalizations

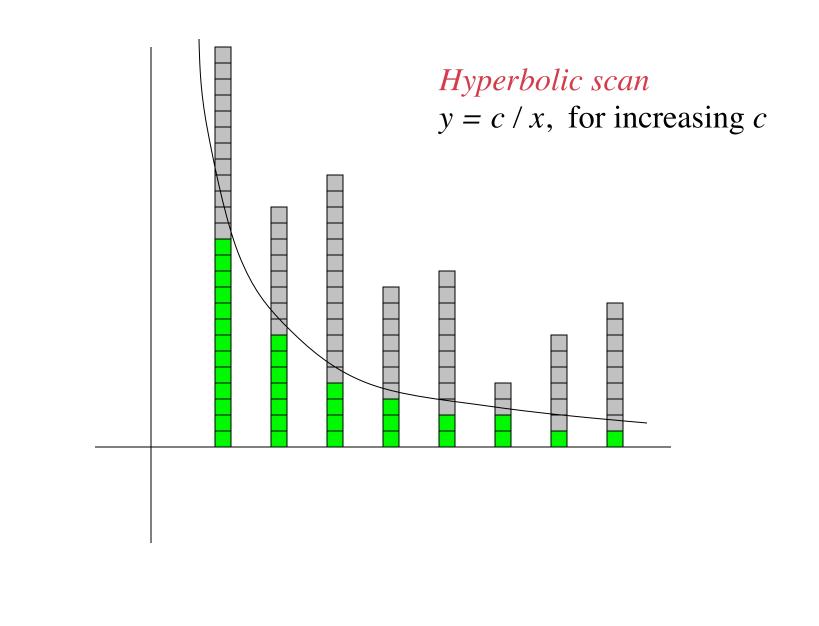
Overview

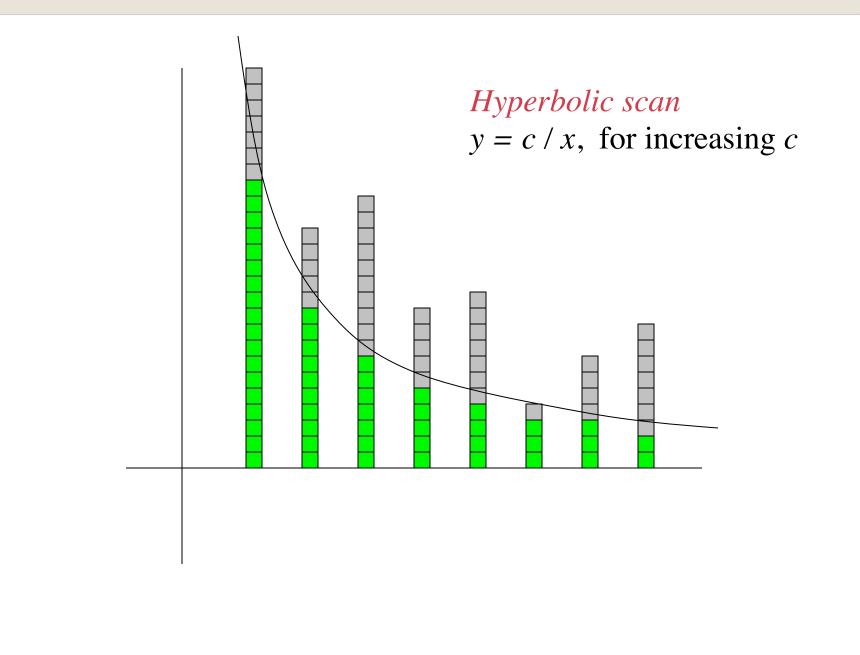
- Introduction and motivation
- List search
- Hyperbolic dovetailing
- Extensions & generalizations
- Applications to input-thrifty algorithms

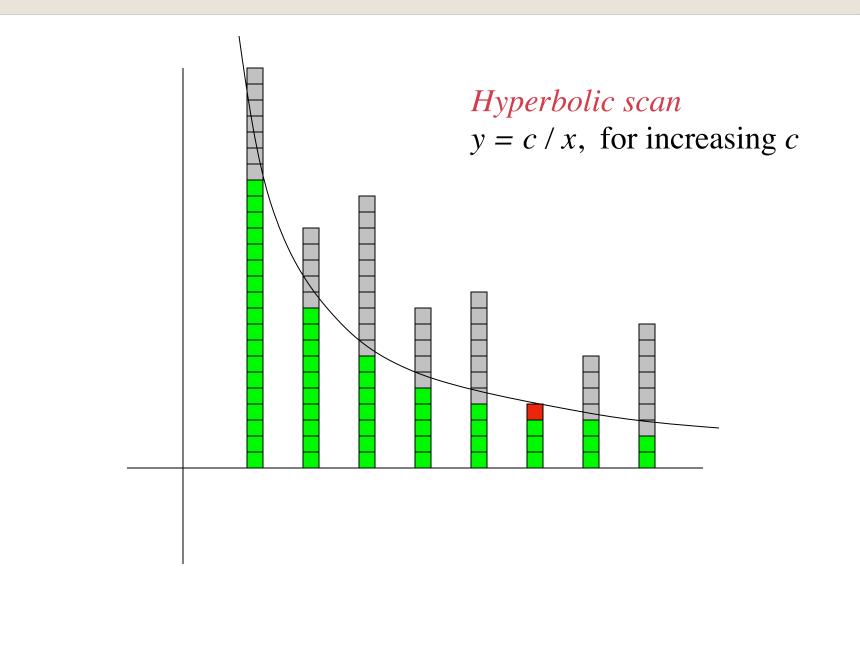
c = 1; **repeat until** some list end is reached **for** i = 1 **to** mcontinue exploration of list iup to position c / iincrement c

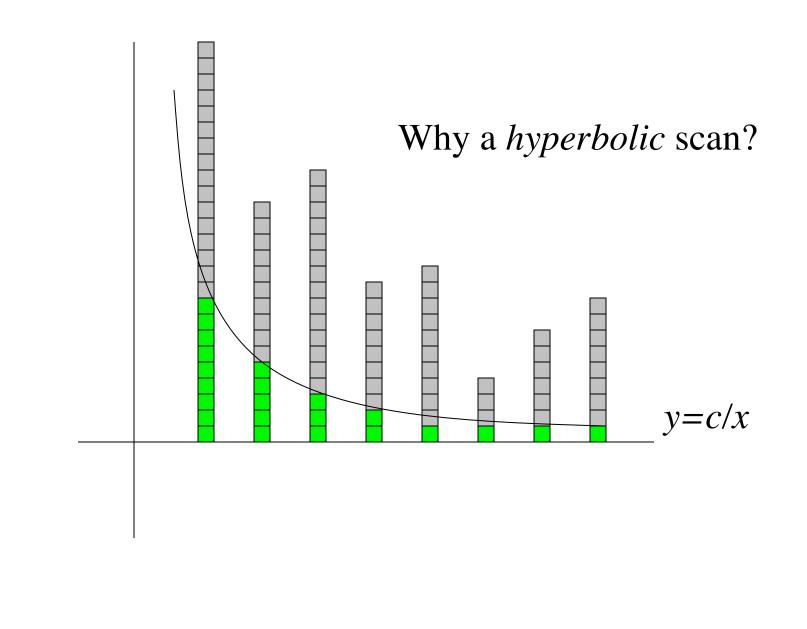


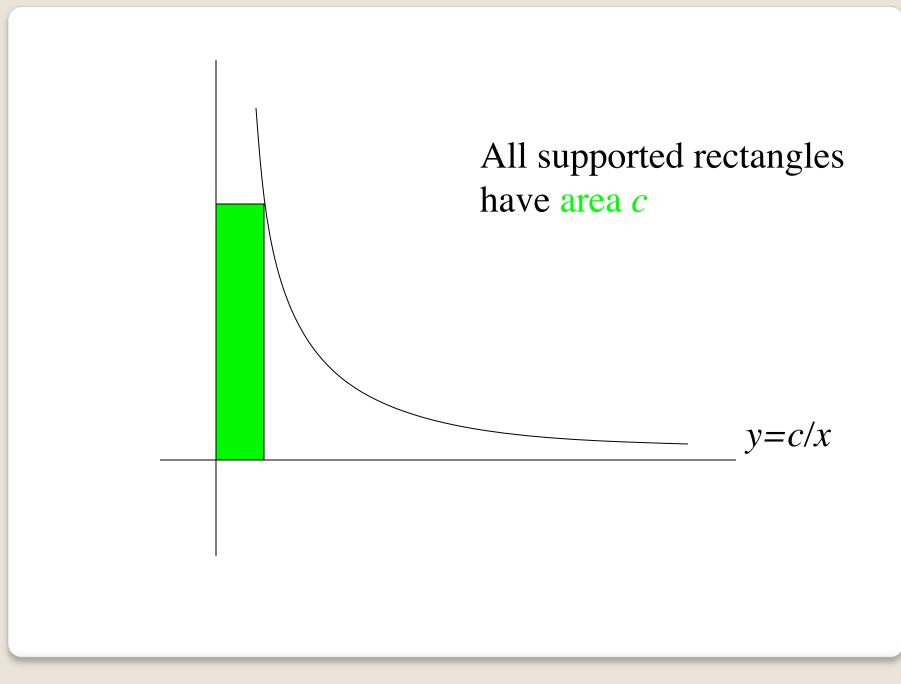


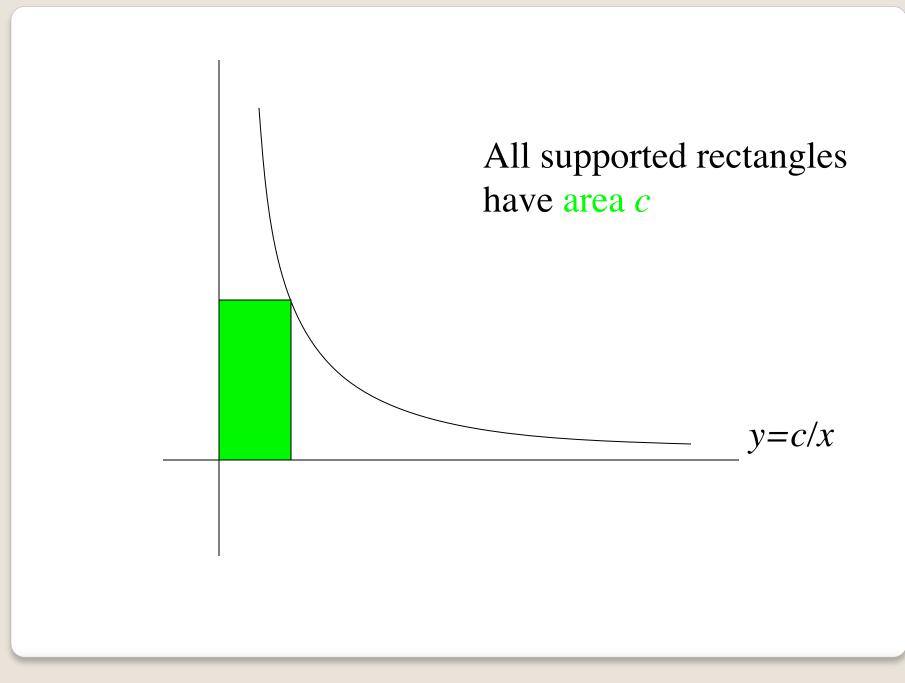


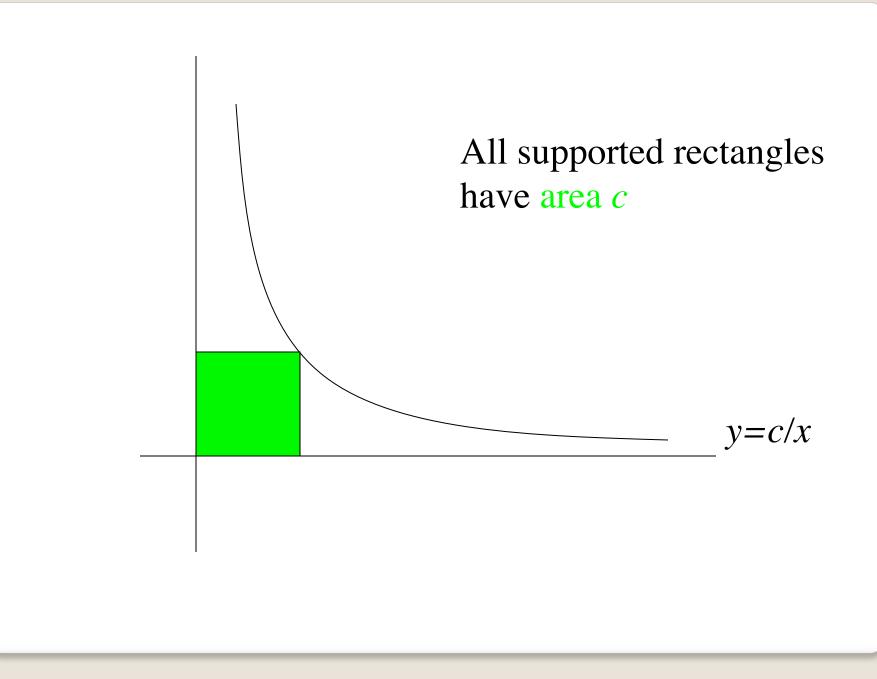


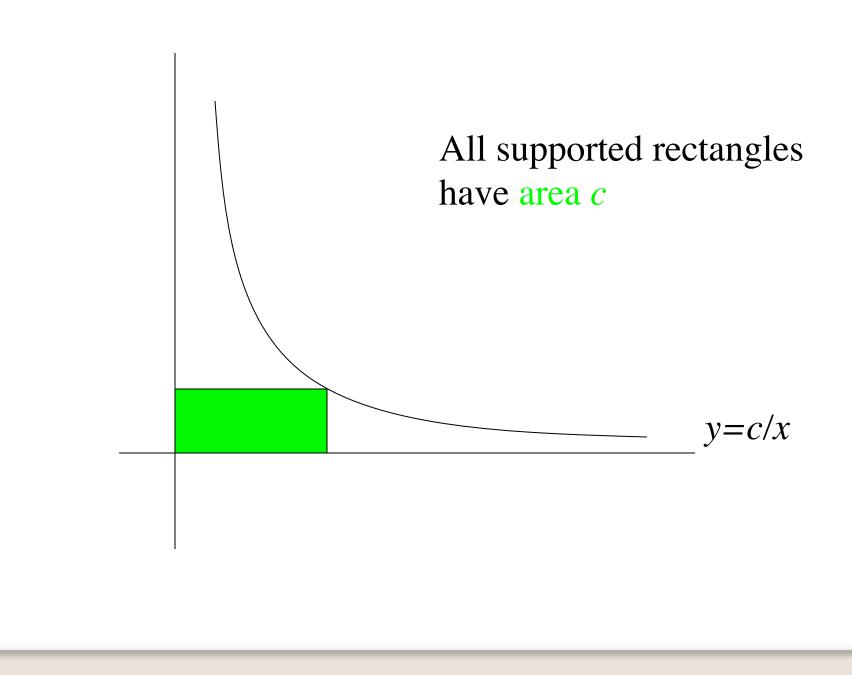


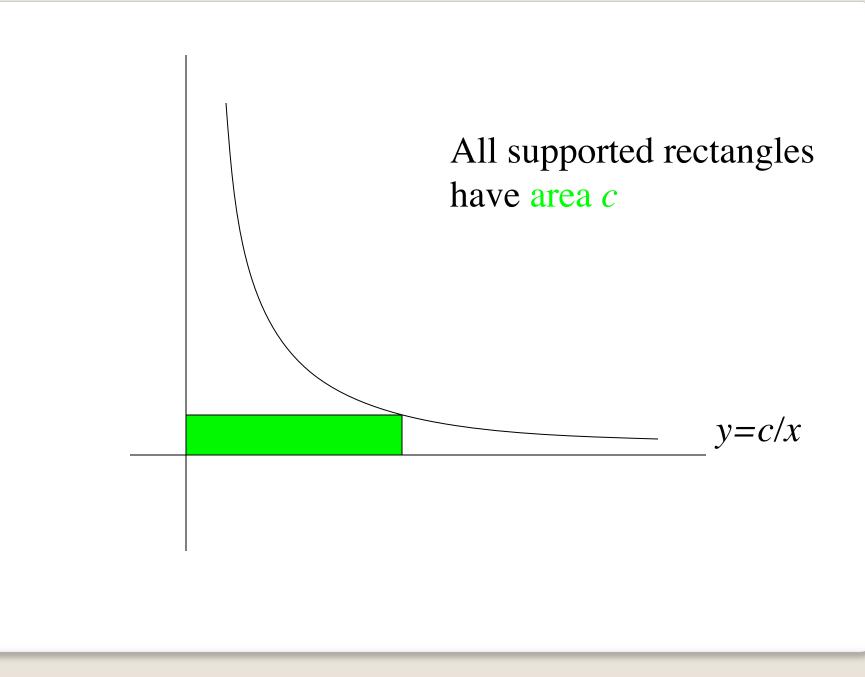


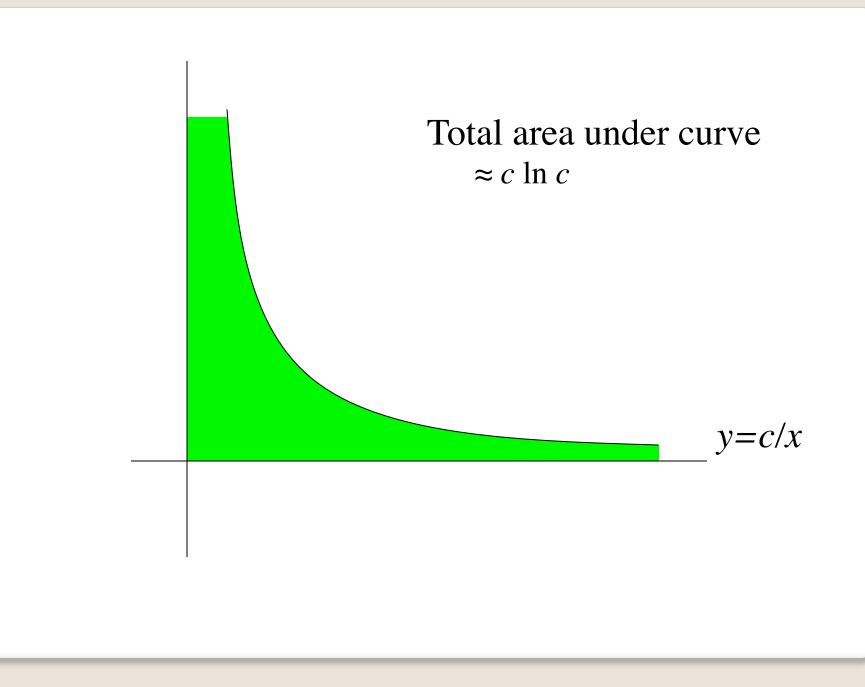






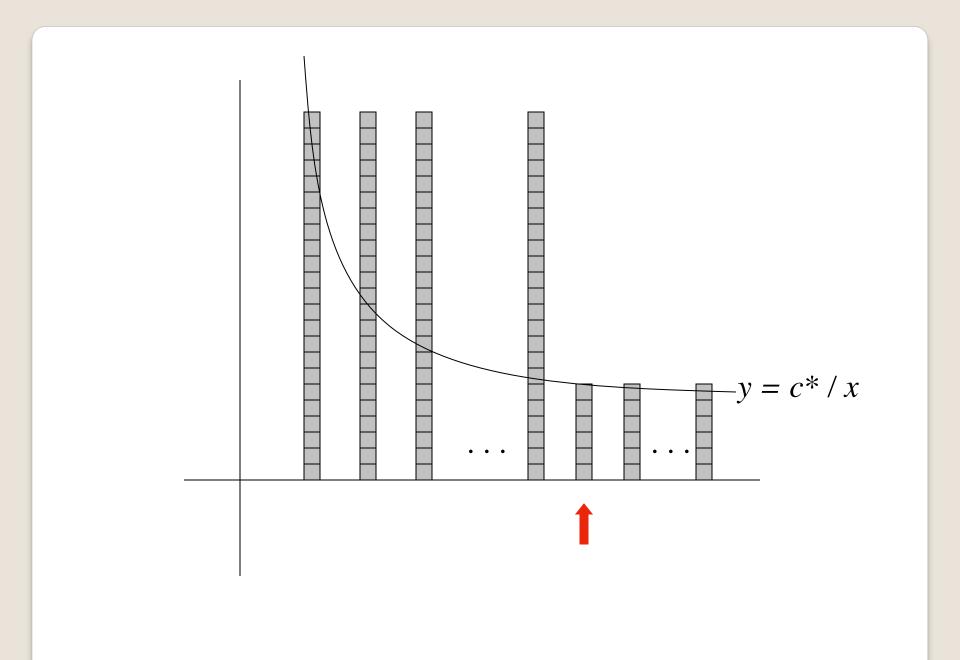


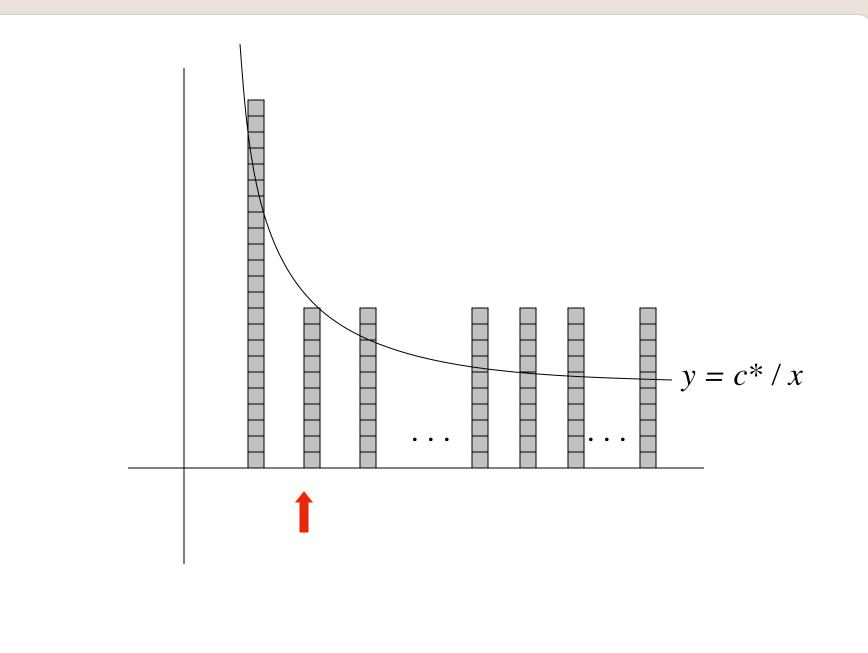




Can we do better?

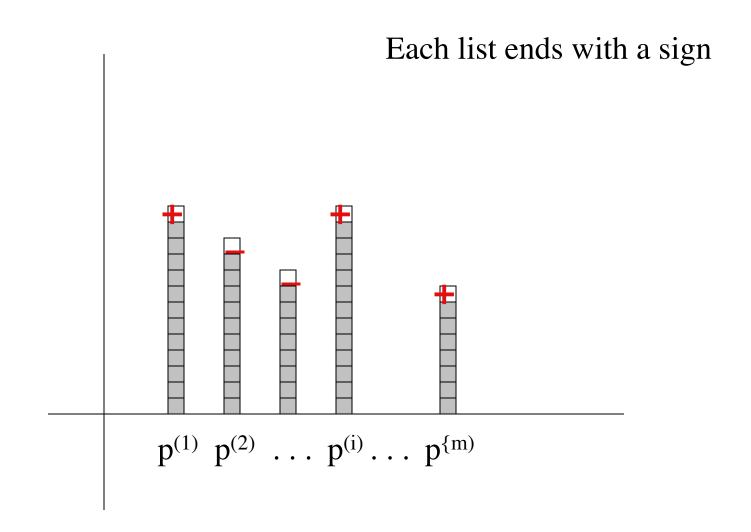
Theorem A3. Any algorithm that solves the list-exploration problem can be forced to make Ω ($c^* \ln c^*$) steps, *even if the algorithm knows that the input pattern* π *satisfies* $c(\pi) = c^*$



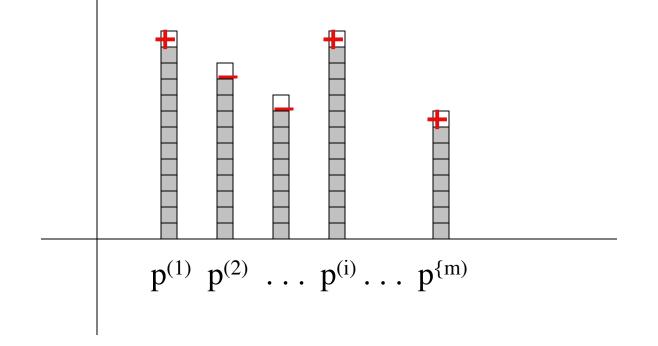


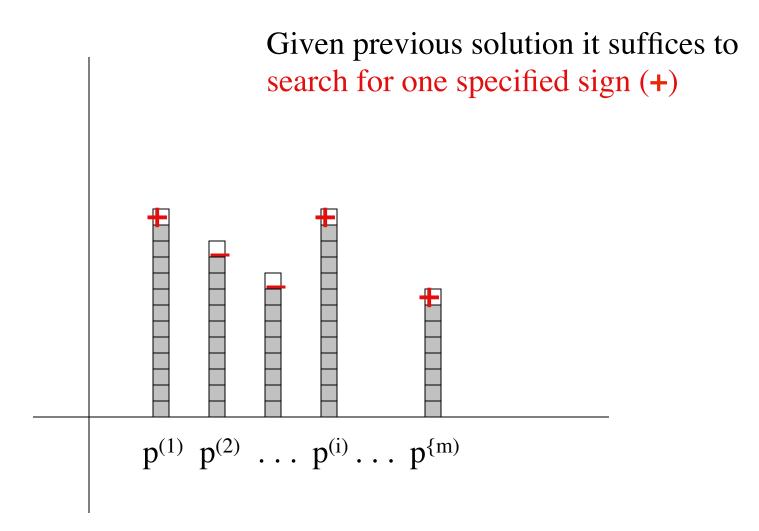
- Introduction and motivation Input-thrifty algorithms
- List search
- Hyperbolic dovetailing
- Applications to input-thrifty algorithms
- Extensions & generalizations

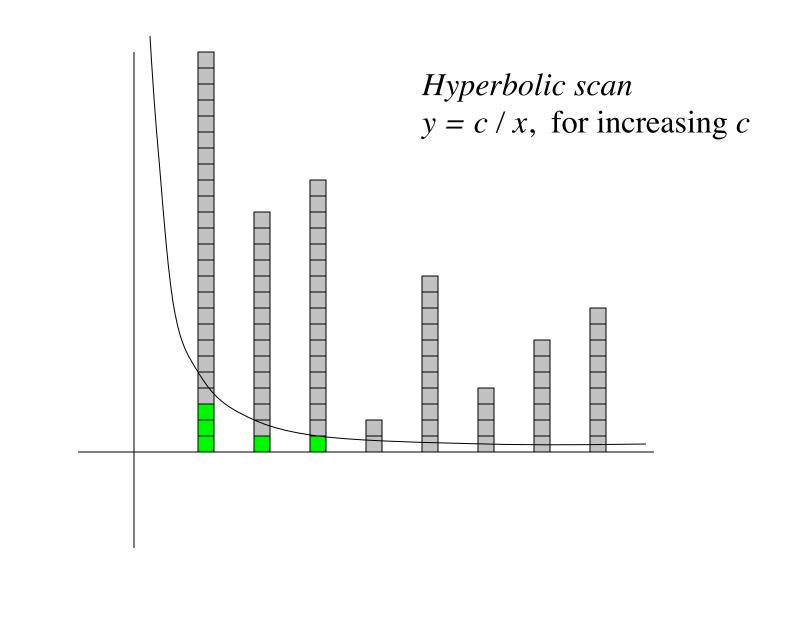
Overview

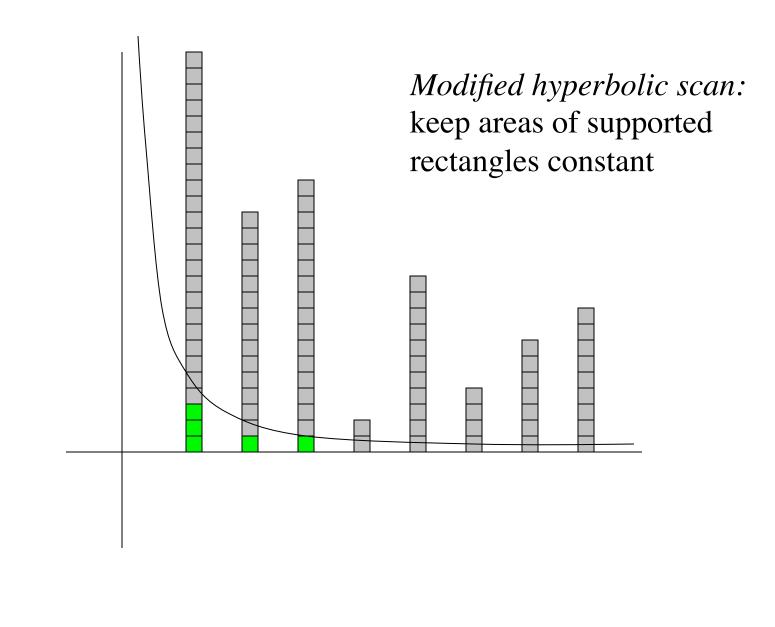


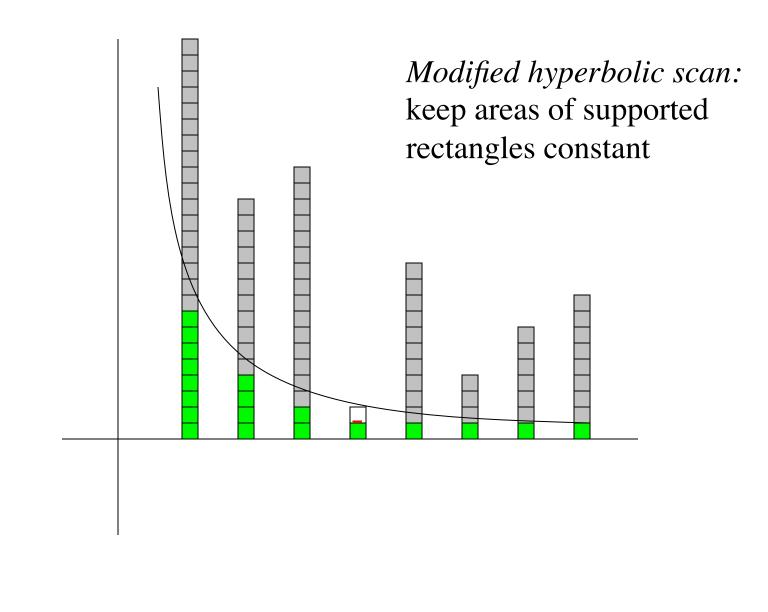
Each list ends with a sign Search for one of each type

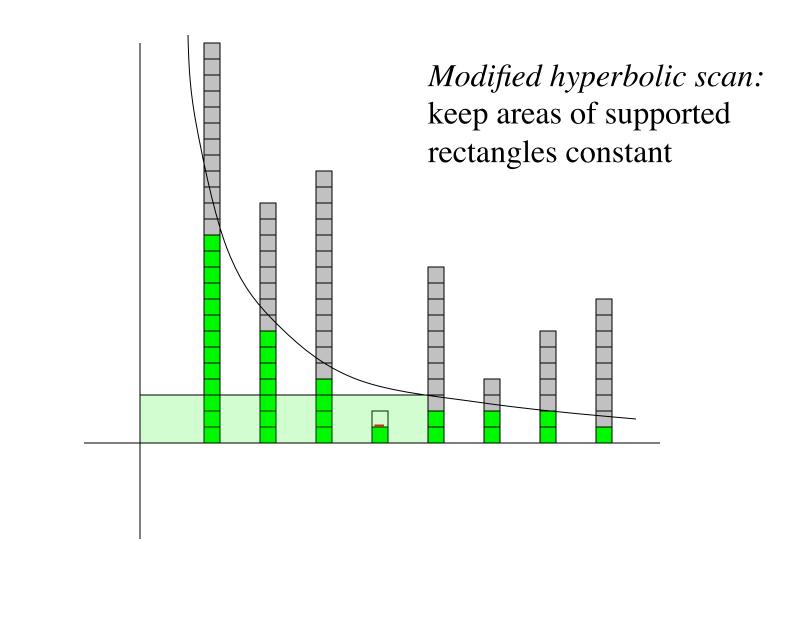


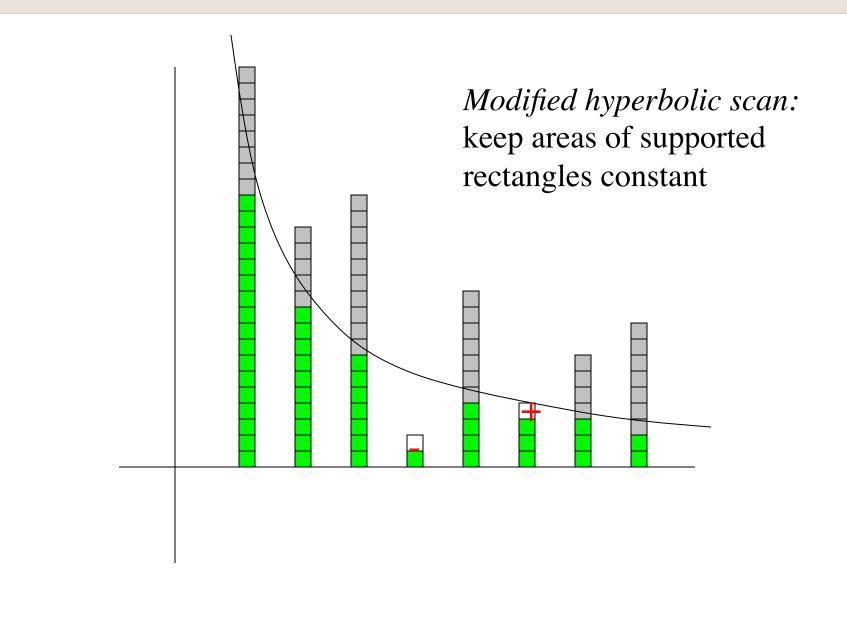












Similar results....

Similar results....

• intrinsic cost is $\min_i m \lambda_i / (m-i)$

Similar results....

- intrinsic cost is $\min_i m \lambda_i / (m-i)$
- hyperbolic scan remains log-competetive

Other generalizations...

- searching for a goal in a general symmetric tree
- searching for multiple goals

Thanks for your attention

