David Kirkpatrick UBC

CS 420 - Spring 2015

—

Rolf Klein

Robert Tseng

Sandra Zilles and
(especially) Raimund Seidel

Acxnowledgements

Introduction and motivation
Input-thrifty algorithms

List search

Hyperbolic dovetailing

Applications to input-thrifty
algorithms

Extensions & generalizations

overview

 Introduction and motivation
Input-thrifty algorithms

- List search

- Hyperbolic dovetailing

- Applications to input-thrifty
algorithms

- Extensions & generalizations

oOvyerview

computing symmetric functions

over [arge input/data sets
f(X)

X1 Xp X3

computing symmetric functions

over [arge input/data sets
£(X)

X1 X9 X3

£f(X)

individual input/data items
are (re)presented

hierarchically f(X)

/

thrifty input/data consumption:

£f(X)

/

thrifty input/data consumption:
take only what you need £f(X)

/

Motivation

Some functions can be computed with less
than full precision.

Inputs/data may initially be known up to some
limited precision/certainty; greater precision is
available, but at additional cost.

" sensor data

" implicit representation--e.g. root-finding
" hierarchical data structures

" sampling error

Motivation

Some functions can be computed with less
than full precision.

Inputs/data may initially be known up to some
limited precision/certainty; greater precision 1s
available, but at additional cost.

" sensor data

" implicit representation--e.g. root-finding
" hierarchical data structures

" sampling error

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin?
Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?
More specifically, if there 1s a
proof using only d bits, can we
find it by examining only O(d)
bits?”

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin?
Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?
More specifically, if there 1s a
proof using only d bits, can we
find it by examining only O(d)
bits?”

Origin-enclosure

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin?
Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?
More specifically, if there 1s a
proof using only d bits, can we
find it by examining only O(d)
bits?”

Origin-enclosure

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin?
Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?
More specifically, if there 1s a
proof using only d bits, can we
find 1t by examining only O(d)
bits?”

Origin-enclosure

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin?
Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?
More specifically, if there 1s a
proof using only d bits, can we
find 1t by examining only O(d)
bits?”

More generally:

" If we wish to evaluate some
geometric predicate for a set of
input points...

How many bits of the input do
we need to examine to answer

" the question, as a function of the
number required to certify the
result?

co-linearity (lower dimensionality)

, More generally:

/o If we wish to evaluate some

| geometric predicate for a set of
input points...

How many bits of the input do

| we need to examine to answer
i the question, as a function of the
| number required to certify the
result?

co-linearity (lower dimensionality)

bounded diameter

More generally:

If we wish to evaluate some
geometric predicate for a set of
input points...

How many bits of the input do
we need to examine to answer
the question, as a function of the
number required to certify the
result?

red-blue separability

More generally:

If we wish to evaluate some
geometric predicate for a set of
input points...

How many bits of the input do
we need to examine to answer
the question, as a function of the
number required to certify the
result?

red-blue separability

More generally:

If we wish to evaluate some
geometric predicate for a set of
input points...

How many bits of the input do
we need to examine to answer
the question, as a function of the
number required to certify the
result?

red-blue separability

More generally:

If we wish to evaluate some
geometric predicate for a set of
input points...

How many bits of the input do
we need to examine to answer
the question, as a function of the
number required to certify the
result?

Model (operations)

= Arbitrary refinement of uncertainty regions

= Arbitrary refinement of uncertainty regions

= Arbitrary refinement of uncertainty regions

= Sequential bit probes

0.2272,0.229)

= Sequential bit probes

0.2272,0.229)

0.122,0.029)

= Sequential bit probes

0.2272,0.229)

0.112,0.019?)

0.122,0.027)

origin enclosure in 1-d

origin enclosure in 1-d

1-d origin enclosure: given n numbers
pM, p@ . p™ find a pair p®, pO that
bracket a given number a. (1.e. show
p<a<pW, for some i, j.)

Introduction and motivation
Input-thrifty algorithms

Hyperbolic dovetailing

Applications to input-thrifty
algorithms

Extensions & generalizations

overview

A. Given m numbers p, p@ . pm),
1dentify at least one that differs from a
given number . (i.e. show pY > a or
pY< a, for some i.)

dy_1
dy

p(l) p(Z)

. p@... pm

p(l) p(2)
... pW
N e

p(l) p(2)
... pW
N e

p(l) p(2)
... pW
N e

p(l) p(2)
... pW
N e

B. Origin enclosure: given n numbers
p(l),p(z)’ . ’p(m), find a pair p(i),p(j)
that bracket a given number a. (1.e.
show p¥<a < pW, for some i, j.)

B. Origin enclosure: given n numbers
p(l),p(z)’ . ’p(m), find a pair p(i),p(j)
that bracket a given number a. (1.e.
show p¥<a < pW, for some i, j.)

p(l) p(2)
... pW
N e

p(l) p(2)
... pW
N e

Each list ends with a sign

[TITITITIII[tH
[TITITITIII[tH

[TT 1T H

p(l) p(z) . p(i) L. p{m)

Each list ends with a sign
Search for one of each type

[TITITITIII[tH
[TITITITIII[tH

[TT 1T H

p(l) p(z) . p(i) L. p{m)

Objective:
Walk from s to ¢ as efficiently as possible.

Objective:
Walk from s to ¢ as efficiently as possible.

Problem:
The individual path lengths d,, d,, ..., d,,
are not known!

How do we decide ...

* when to turn around?

How do we decide ...
* when to turn around?

* which path to explore next?

How do we evaluate a strategy?

* worst case...

How do we evaluate a strategy?

* worst case...
all strategies are horrible!

How do we evaluate a strategy?

* worst case...
all strategies are horrible!

* competitive analysis
behaviour should reflect intrinsic
complexity of input

Why should I (you) be interested?

Why should I (you) be interested?

* search games [Gal " 80]

Why should I (you) be interested?

* search games [Gal " 80]

* geometric search in unknown environments
[Papadimitriou et al. ‘89, Fleischer et al. ~ 04]

Why should I (you) be interested?

* search games [Gal " 80]

* geometric search in unknown environments
[Papadimitriou et al. ‘89, Fleischer et al. ~ 04]

* randomized/heuristic algorithm design
[Luby et al. ‘93, Kao et al. ’ 98]

Why should I (you) be interested?

* search games [Gal " 80]

* geometric search in unknown environments
[Papadimitriou et al. ‘89, Fleischer et al. ~ 04]

* randomized/heuristic algorithm design
[Luby et al. ‘93, Kao et al. ’ 98]

* playing slot machines...conducting research...life

This seems vaguely familiar...

m lanes

m lanes, a cow

m lanes, a cow and a pasture

m lanes, a cow and a pasture

m-lane cow-paths problem

m lanes, a cow and a pasture

m-lane cow-paths problem

m lanes, a cow and a pasture

Baeza-Yates
9 et al. " 93,

| Kao et al.
'@5 ‘96

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

m-lane cow-paths problem

Q
@

m-lane cow-paths problem

@

(el)

@
R

m-lane cow-paths problem

m-lane cow-paths problem

“spiraling” breadth-first (equitable) search

(eD
Qe
// ~~~~~~~~~~ l‘
III I, ’ - ,"
/I ,/I “
: /
ﬂ /'
(U “
/ Ga \‘
: \
: \
: \
: 1
: \
: \
1
1
” G . m
p/ b
7,
. |
/
/
/
7
N ,’3
(@0

m-lane cow-paths problem

remains optimal under a variety of cost models

(el)
(-
A e P \
N T -l \
’ , o= ,’
/ ’ '
/ 7
U ’ \
’ ’ \
. ’
<\ /
(U — !
I, ..v “
! \
! \
1 \
! \
! \
1 \
1
1
1 h
! GG Cry)
! OO
(ev
\\
4
4
’
’
K4
0B

m-lane cow-paths problem

remains optimal under a variety of cost models

(el)
(-
A e P \
N T -l \
’ , o= ,’
/ ’ '
/ 7
U ’ \
’ ’ \
. ’
<\ /
(U — !
I, ..v “
! \
! \
1 \
! \
! \
1 \
1
1
1 h
! GG Cry)
! OO
(ev
\\
4
4
’
’
K4
0B

optimal multi-process “dovetailing”

What if there 1s more than one pasture?

multi-pasture cow-paths problem
v

777

multi-pasture cow-paths problem
v

Given a collection of m lists:

p p@ . pH, . pm

Given a collection of m lists:
find the end of at least one

p® p@ . pi . pim

Given a collection of m lists:
find the end of at least one

p® p@ . pi . pim

How should we traverse?

p® p@ . pi . pim

How should we traverse?

breadth-first search?

p® p@ . pi . pim

breadth-first search?

m

depth-first search?

‘N .

p) p@ . pd, . pim

depth-first search?

‘R .

Both breadth-first and depth-first search
can be arbitrarily bad

Both breadth-first and depth-first search
can be arbitrarily bad -- relative to the size
of the shortest certificate.

Both breadth-first and depth-first search
can be arbitrarily bad -- relative to the size
of the shortest certificate.

But can we hope to discover short
certificates quickly?

Suppose an algorithm is given the
pattern i={A,, A,, ..., A} of list
lengths, but not their presentation.

[[T TTTT]
(TTTT]

Adversary strategy: Maintain lists in

order of exploration length. Force

continued exploration as long as sequence
1s consistent with input pattern 7.

[[T TTTTTT]
[[T TT]
(TTTT]

Adversary strategy: Maintain lists in

order of exploration length. Force

continued exploration as long as sequence
1s consistent with input pattern 7.

[T T T TTTT]
[[T [T]
(TTTT]

Adversary strategy: Maintain lists in

order of exploration length. Force

continued exploration as long as sequence
1s consistent with input pattern 7.

[T T T TTTT]
[T T TT]
T 11T

Adversary strategy: Maintain lists in

order of exploration length. Force

continued exploration as long as sequence
1s consistent with input pattern 7.

[TTTT T T T[]
[[T TT]
[T 111

Adversary strategy: Maintain lists in

order of exploration length. Force

continued exploration as long as sequence
1s consistent with input pattern 7.

i..l N

Game ends when some list
is fully explored...

1k

Game ends when some list
is fully explored...
... and the adversary has
forced the exploration of
the associated region

16

The i-th longest list has an
associated region of area c,

[[T TTTTTT]
[[T TT]
(TTTT]

The i-th longest list has an
associated region of area c,

[[T TTTTTT]
[[T TT]
(TTTT]

The i-th longest list has an
associated region of area c,

The i-th longest list has an
associated region of area ¢, = iA,

HEEE
HEEE
(TTTT]

~,

S,

Theorem Al. Any algorithm that solves
the list-exploration problem with inputs of
pattern ;t can be forced to make min, {c;}

steps,

Theorem Al. Any algorithm that solves
the list-exploration problem with inputs of
pattern ;t can be forced to make min, {c;}
steps, even if the algorithm knows .

The strategy BDEFS(\,) succeeds,
in the worst case, with cost ¢, = i/,

HEEE
HEEE
(TTTT]

~,

S,

Theorem Al. Any algorithm that solves
the list-exploration problem with inputs of
pattern ;t can be forced to make min, {c;}
steps, even if the algorithm knows .

So we refer to ¢(t) = min, {c,} as the
intrinsic (worst-case) cost of the list-

exploration problem with input pattern s.

Theorem A2. There is an algorithm that
solves the list-exploration problem (with
arbitrary inputs) in

O(¢(rt) In min {m, c(m)}) steps,

Theorem A2. There is an algorithm that
solves the list-exploration problem (with
arbitrary inputs) in

O(¢(rt) In min {m, c(m)}) steps,

without knowing the input pattern .

Introduction and motivation
Input-thrifty algorithms

List search

Hyperbolic dovetailing

Applications to input-thrifty
algorithms

Extensions & generalizations

overview

Introduction and motivation
List search

Extensions & generalizations

Applications to input-thrifty
algorithms

overview

c=1;
repeat until some list end 1s reached
for i=1 to m
continue exploration of list i
up to position c/i
increment ¢

[TT AT T T T I T I T ITITT]

[TTT T T TTITITITTTT]

[AT T T TTTTTTITTIT]

Hyperbolic scan
y = ¢/ x, for increasing c

[TTTT T T AT TP TP I T I T TT]

[T VT T T T T TITITITTIT]

[TTTATTTTTTITTIT]

e

[T T TTTT]

Hyperbolic scan
y = ¢/ x, for increasing c

LTI T I T I T T T T AT ITITTITT]

—a—
-/I/IIIIII

Hyperbolic scan
y = ¢/ x, for increasing c¢

-

LT

ITTTTTTIATTITITITITITIT]

Hyperbolic scan
y = ¢/ x, for increasing c¢

]

LT

ITTTTTTIATTITITITITITIT]

Hyperbolic scan
y = ¢/ x, for increasing c¢

]

[TTTT T I AT I TT]

[TV I T T T T TITITITTT]

[TTTAT T T TTTITTIT]

[T T TTTT]

Why a hyperbolic scan?

[T T T T TTTTT]

=

y=c/x

All supported rectangles
have area ¢

y=c/x

All supported rectangles
have area ¢

y=c/x

All supported rectangles
have area ¢

y=c/x

All supported rectangles
have area ¢

y=c/x

All supported rectangles
have area ¢

y=c/x

Total area under curve
~clnc

y=c/x

Theorem A2. There is an algorithm that
solves the list-exploration problem (with
arbitrary inputs) in

O(¢(rt) In min {m, c(m)}) steps,

without knowing the input pattern .

Theorem A2. There is an algorithm that
solves the list-exploration problem (with
arbitrary inputs) in

O(¢(rt) In min {m, c(m)}) steps,

without knowing the input pattern .

Can we do better?

Theorem A3. Any algorithm that solves
the list-exploration problem can be forced
to make Q (¢ In ¢”) steps,

even if the algorithm knows that the input
pattern T satisfies c(x) = ¢

[TTTTTTTITTTITTIT T I

[[T T T T T IAT T T T T]

HEEEEEN4EEEEEEEEEEEEEE

HEEENIEEEEEEEEEEEEEEEE

[[T T[T

y=c*/x

—)

[[T T T T T T PT T I AT

[[T TTTT /T

[[T T TTTT]

[[T I TTT]

y=c*/x

- Introduction and motivation
Input-thrifty algorithms

- List search

- Hyperbolic dovetailing

« Applications to input-thrifty
algorithms

- Extensions & generalizations

overview

Each list ends with a sign

[TITITITIII[tH
[TITITITIII[tH

[TT 1T H

p(l) p(z) . p(i) L. p{m)

Each list ends with a sign
Search for one of each type

[TITITITIII[tH
[TITITITIII[tH

[TT 1T H

p(l) p(z) . p(i) L. p{m)

Given previous solution it suffices to
search for one specified sign (+)

[TITITITIII[tH
[TITITITIII[tH

[TT 1T H

p(l) p(2) L p(i). o p{m)

[TT AT T T T I T I T ITITT]

[AT T T TTTTTTITTIT]

[TTT T T TTITITITTTT]

Hyperbolic scan
y = ¢/ x, for increasing c

[TT AT T T T I T I T ITITT]

[AT T T TTTTTTITTIT]

[TTT T T TTITITITTTT]

Modified hyperbolic scan:
keep areas of supported
rectangles constant

[TTTT T T AT TP TP I T I T TT]

[TTTATTTTTTITTIT]

[T VT T T T T TITITITTIT]

Modified hyperbolic scan:
keep areas of supported
rectangles constant

[T T T T TTTTT]
[LT T TT]

=

[TTTT T T I AT I

[TTIAT T T ITT]

[AT T T T ITTTT]

Modified hyperbolic scan:
keep areas of supported
rectangles constant

[T[T T]
[T T TTTT]

g

T T T T T T T T T I T T T J T

ITTTTTTIATTITITITITITIT]

e /
i

Modified hyperbolic scan:
keep areas of supported
rectangles constant

What about the case?

What about the case?

Similar results....

What about the case?

Similar results....

® Intrinsic cost 18 min, mA/(m-i)

What about the case?

Similar results....

® Intrinsic cost 18 min, mA/(m-i)
* hyperbolic scan remains log-competetive

Other generalizations...

 searching for a goal in a general symmetric tree

e searching for multiple goals

g(}u.

e

Siarsli

- .o ..-.fo A AL MAAA LA
.. : cr.. .. L i--\-.\...
Y

i

‘“ f.—...l.-.-l f

..%-L?\'

. - ..-ciaf.>
" f.‘v..tua‘-
ot n).ﬁ.-na ' id

LR ...A "

AN
TR TS

R

o .
T YY T Y

T P A

o - -——

1
! .,. _,__.
\\
! _._:.

