
Input-Thrifty Algorithms
and hyperbolic dovetailing

David Kirkpatrick UBC

CS 420 – Spring 2015

Acknowledgements

• Rolf Klein
• Robert Tseng
• Sandra Zilles and
• (especially) Raimund Seidel

Overview

•  Introduction and motivation
 Input-thrifty algorithms

•  List search
•  Hyperbolic dovetailing
•  Applications to input-thrifty

algorithms
•  Extensions & generalizations

Overview

•  Introduction and motivation
 Input-thrifty algorithms

•  List search
•  Hyperbolic dovetailing
•  Applications to input-thrifty

algorithms
•  Extensions & generalizations

f(X)	

x1	

x2	

x3	

 xi	

 xm	

computing symmetric functions	

over large input/data sets	

…	

 …	

f(X)	

x1	

x2	

x3	

 xi	

 xm	

computing symmetric functions	

over large input/data sets	

…	

 …	

f(X)	

f(X)	

individual input/data items	

are (re)presented 	

hierarchically	

f(X)	

thrifty input/data consumption:	

take only what you need	

f(X)	

thrifty input/data consumption:	

take only what you need	

 Inputs/data may initially be known up to some
limited precision/certainty; greater precision is
available, but at additional cost.	

§  sensor data	

§  implicit representation--e.g. root-finding	

§  hierarchical data structures	

§  sampling error	

Some functions can be computed with less	

than full precision. 	

Motivation	

 Inputs/data may initially be known up to some
limited precision/certainty; greater precision is
available, but at additional cost.	

§  sensor data	

§  implicit representation--e.g. root-finding	

§  hierarchical data structures	

§  sampling error	

Some functions can be computed with less	

than full precision. 	

Motivation	

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin? 	

Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?	

More specifically, if there is a
proof using only d bits, can we
find it by examining only O(d)
bits?”	

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin? 	

Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?	

More specifically, if there is a
proof using only d bits, can we
find it by examining only O(d)
bits?”	

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin? 	

Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?	

More specifically, if there is a
proof using only d bits, can we
find it by examining only O(d)
bits?”	

Origin-enclosure	

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin? 	

Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?	

More specifically, if there is a
proof using only d bits, can we
find it by examining only O(d)
bits?”	

Origin-enclosure	

Leo Guibas (2003): “Given m
points in the plane, does their
convex hull contain the origin? 	

Suppose further that the points
have (log n)-bit coordinates.
How many bits of the input do
we need to examine to answer
the question, in the worst case?	

More specifically, if there is a
proof using only d bits, can we
find it by examining only O(d)
bits?”	

Origin-enclosure	

More generally:	

If we wish to evaluate some
geometric predicate for a set of
input points…	

How many bits of the input do
we need to examine to answer
the question, as a function of the	

number required to certify the
result?	

co-linearity (lower dimensionality)	

More generally:	

If we wish to evaluate some
geometric predicate for a set of
input points…	

How many bits of the input do
we need to examine to answer
the question, as a function of the	

number required to certify the
result?	

co-linearity (lower dimensionality)	

More generally:	

If we wish to evaluate some
geometric predicate for a set of
input points…	

How many bits of the input do
we need to examine to answer
the question, as a function of the	

number required to certify the
result?	

bounded diameter	

More generally:	

If we wish to evaluate some
geometric predicate for a set of
input points…	

How many bits of the input do
we need to examine to answer
the question, as a function of the	

number required to certify the
result?	

red-blue separability	

More generally:	

If we wish to evaluate some
geometric predicate for a set of
input points…	

How many bits of the input do
we need to examine to answer
the question, as a function of the	

number required to certify the
result?	

red-blue separability	

More generally:	

If we wish to evaluate some
geometric predicate for a set of
input points…	

How many bits of the input do
we need to examine to answer
the question, as a function of the	

number required to certify the
result?	

red-blue separability	

§  Arbitrary refinement of uncertainty regions	

0	

 1
0	

1

Model (operations)	

0	

 1
0	

1

§  Arbitrary refinement of uncertainty regions	

0	

 1
0	

1

§  Arbitrary refinement of uncertainty regions	

§  Sequential bit probes	

0	

 1
0	

1

(0. ? ? ?, 0. ? ? ?)	

§  Sequential bit probes	

0	

 1
0	

1

(0. ? ? ?, 0. ? ? ?)	

(0. 1 ? ?, 0. 0 ? ?)	

§  Sequential bit probes	

0	

 1
0	

1

(0. ? ? ?, 0. ? ? ?)	

(0. 1 ? ?, 0. 0 ? ?)	

(0. 1 1 ?, 0. 0 1 ?)	

origin enclosure in 1-d	

origin enclosure in 1-d	

1-d origin enclosure: given n numbers 	

 p(1), p(2), …, p(n), find a pair p(i), p(j) that

bracket a given number a. (i.e. show
p(i) < a < p(j), for some i, j.)	

Overview

•  Introduction and motivation
 Input-thrifty algorithms

•  List search
•  Hyperbolic dovetailing
•  Applications to input-thrifty

algorithms
•  Extensions & generalizations

A. Given m numbers p(1), p(2), …, p(m),
identify at least one that differs from a
given number a. (i.e. show p(i) > a or
p(i) < a, for some i.)	

ak-1 	

ak-2 	

	

	

	

a2 	

a1 	

a0 	

	

	

	

a p(1) p(2) . . . p(i) . . . p{m)	

 a p(1) p(2) . . . p(i) . . . p{m)	

 a p(1) p(2) . . . p(i) . . . p{m)	

 a p(1) p(2) . . . p(i) . . . p{m)	

	

	

	

 a p(1) p(2) . . . p(i) . . . p{m)	

B. Origin enclosure: given n numbers
p(1), p(2), …, p(m), find a pair p(i), p(j)
that bracket a given number a. (i.e.
show p(i) < a < p(j), for some i, j.)	

B. Origin enclosure: given n numbers
p(1), p(2), …, p(m), find a pair p(i), p(j)
that bracket a given number a. (i.e.
show p(i) < a < p(j), for some i, j.)	

 a p(1) p(2) . . . p(i) . . . p{m)	

	

	

	

 a p(1) p(2) . . . p(i) . . . p{m)	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

Each list ends with a sign	

Search for one of each type	

+	

 +	

+	

_	

_	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

Each list ends with a sign	

Search for one of each type	

+	

 +	

+	

_	

_	

s	

t	

Objective: 	

Walk from s to t as efficiently as possible. 	

	

Problem: 	

The individual path lengths d1, d2, …, dm 	

are not known!	

Objective: 	

Walk from s to t as efficiently as possible. 	

	

Problem: 	

The individual path lengths d1, d2, …, dm 	

are not known!	

s	

t	

d1	

d2	

dm	

s	

t	

d1	

d2	

dm	

s	

t	

d1	

d2	

dm	

s	

t	

d1	

d2	

dm	

s	

t	

d1	

d2	

dm	

s	

t	

d1	

d2	

dm	

s	

t	

d1	

d2	

dm	

How do we decide …	

	

	

* when to turn around?	

	

	

* which path to explore next?	

How do we decide …	

	

	

* when to turn around?	

	

	

* which path to explore next?	

How do we evaluate a strategy?	

	

	

* worst case…	

	

 	

all strategies are horrible!	

	

	

* competitive analysis	

	

 	

behaviour should reflect intrinsic	

	

 	

 	

complexity of input	

	

 	

compare strategy with algorithms	

	

 	

 	

that “know” the path lengths	

How do we evaluate a strategy?	

	

	

* worst case…	

	

 	

all strategies are horrible!	

	

	

* competitive analysis	

	

 	

behaviour should reflect intrinsic	

	

 	

 	

complexity of input	

	

 	

compare strategy with algorithms	

	

 	

 	

that “know” the path lengths	

How do we evaluate a strategy?	

	

	

* worst case…	

	

 	

all strategies are horrible!	

	

	

* competitive analysis	

	

 	

behaviour should reflect intrinsic	

	

 	

 	

complexity of input	

	

 	

compare strategy with algorithms	

	

 	

 	

that “know” the path lengths	

Why should I (you) be interested?	

 	

 * search games [Gal ’80]	

	

 * geometric search in unknown environments	

	

[Papadimitriou et al. ‘89, Fleischer et al. ’04]	

	

 * randomized/heuristic algorithm design 	

	

[Luby et al. ‘93, Kao et al. ’98]	

	

 * playing slot machines...conducting research...life

	

 	

	

Why should I (you) be interested?	

 	

 * search games [Gal ’80]	

	

 * geometric search in unknown environments	

	

[Papadimitriou et al. ‘89, Fleischer et al. ’04]	

	

 * randomized/heuristic algorithm design 	

	

[Luby et al. ‘93, Kao et al. ’98]	

	

 * playing slot machines...conducting research...life

	

 	

	

Why should I (you) be interested?	

 	

 * search games [Gal ’80]	

	

 * geometric search in unknown environments	

	

[Papadimitriou et al. ‘89, Fleischer et al. ’04]	

	

 * randomized/heuristic algorithm design 	

	

[Luby et al. ‘93, Kao et al. ’98]	

	

 * playing slot machines...conducting research...life

	

 	

	

Why should I (you) be interested?	

 	

 * search games [Gal ’80]	

	

 * geometric search in unknown environments	

	

[Papadimitriou et al. ‘89, Fleischer et al. ’04]	

	

 * randomized/heuristic algorithm design 	

	

[Luby et al. ‘93, Kao et al. ’98]	

	

 * playing slot machines...conducting research...life

	

 	

	

Why should I (you) be interested?	

 	

 * search games [Gal ’80]	

	

 * geometric search in unknown environments	

	

[Papadimitriou et al. ‘89, Fleischer et al. ’04]	

	

 * randomized/heuristic algorithm design 	

	

[Luby et al. ‘93, Kao et al. ’98]	

	

 * playing slot machines...conducting research...life

	

 	

	

This seems vaguely familiar…	

	

m lanes, a cow and a pasture	

	

…	

…	

 …	

…	

…	

…	

m lanes, a cow and a pasture	

	

…	

…	

 …	

…	

…	

…	

m lanes, a cow and a pasture	

	

…	

…	

 …	

…	

…	

…	

d	

m lanes, a cow and a pasture	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

d	

m lanes, a cow and a pasture	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

????	

d	

m lanes, a cow and a pasture	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

????	

d	

Baeza-Yates
et al. ’93,
Kao et al.
‘96
…

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

@	

@	

@	

@	

 @	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

@	

@	

@	

@	

 @	

@	

@	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

@	

@	

@	

@	

 @	

@	

@	

@	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

@	

@	

@	

@	

 @	

@	

@	

@	

“spiraling” breadth-first (equitable) search	

	

	

m-lane cow-paths problem	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

@	

@	

@	

@	

 @	

@	

@	

@	

remains optimal under a variety of cost models	

	

	

optimal multi-process “dovetailing”	

…	

…	

 …	

…	

…	

…	

??	

d	

@	

@	

@	

@	

@	

@	

 @	

@	

@	

@	

remains optimal under a variety of cost models	

	

	

…	

…	

 …	

…	

…	

…	

di	

dj	

	

dk	

	

What if there is more than one pasture?	

	

	

multi-pasture cow-paths problem	

…	

…	

 …	

…	

…	

…	

di	

dj	

	

dk	

	

	

	

multi-pasture cow-paths problem	

…	

…	

 …	

…	

…	

…	

di	

dj	

	

dk	

	

????	

	

	

	

 p(1) p(2) . . . p(i) . . . p(m)	

Given a collection of m lists:	

find the end of at least one	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

Given a collection of m lists:	

find the end of at least one	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

Given a collection of m lists:	

find the end of at least one	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

How should we traverse?	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

How should we traverse?	

breadth-first search?	

 p(1) p(2) . . . p(i) . . . p{m)	

breadth-first search?	

 p(1) p(2) . . . p(i) . . . p{m)	

depth-first search?	

 p(1) p(2) . . . p(i) . . . p{m)	

depth-first search?	

Both breadth-first and depth-first search	

can be arbitrarily bad -- relative to the size
of the shortest certificate	

	

	

Can we hope to discover short certificates	

quickly?	

icate	

Both breadth-first and depth-first search	

can be arbitrarily bad -- relative to the size
of the shortest certificate.	

	

	

Can we hope to discover short certificates	

quickly?	

icate	

Both breadth-first and depth-first search	

can be arbitrarily bad -- relative to the size
of the shortest certificate.	

	

	

But can we hope to discover short
certificates quickly?	

icate	

Suppose an algorithm is given the 	

 pattern π={λ1, λ2, …, λm } of list
lengths, but not their presentation.	

. . .	

. . .	

Adversary strategy: Maintain lists in	

order of exploration length. Force	

continued exploration as long as sequence	

	

is consistent with input pattern π.	

. . .	

. . .	

Adversary strategy: Maintain lists in	

order of exploration length. Force	

continued exploration as long as sequence	

	

is consistent with input pattern π.	

. . .	

. . .	

Adversary strategy: Maintain lists in	

order of exploration length. Force	

continued exploration as long as sequence	

	

is consistent with input pattern π.	

. . .	

. . .	

Adversary strategy: Maintain lists in	

order of exploration length. Force	

continued exploration as long as sequence	

	

is consistent with input pattern π.	

. . .	

. . .	

Adversary strategy: Maintain lists in	

order of exploration length. Force	

continued exploration as long as sequence	

	

is consistent with input pattern π.	

. . .	

. . .	

. . .	

. . .	

Game ends when some list	

is fully explored…	

 … and the adversary has 	

 forced the exploration of 	

 the associated region	

. . .	

. . .	

Game ends when some list	

is fully explored…	

 … and the adversary has 	

 forced the exploration of 	

 the associated region	

The i-th longest list has an	

associated region of area ci	

. . .	

. . .	

The i-th longest list has an	

associated region of area ci	

. . .	

. . .	

The i-th longest list has an	

associated region of area ci	

. . .	

. . .	

The i-th longest list has an	

associated region of area ci = iλi	

	

 	

. . .	

. . .	

i	

ci	

λi	

Theorem A1. Any algorithm that solves 	

the list-exploration problem with inputs of 	

pattern π can be forced to make mini {ci} 	

steps, even if the algorithm knows π.	

We refer to c(π) = mini {ci} as the 	

intrinsic cost of the list-exploration problem	

with input pattern π. 	

Theorem A1. Any algorithm that solves 	

the list-exploration problem with inputs of 	

pattern π can be forced to make mini {ci} 	

steps, even if the algorithm knows π.	

We refer to c(π) = mini {ci} as the 	

intrinsic cost of the list-exploration problem	

with input pattern π. 	

The strategy BDFS(λi) succeeds,	

in the worst case, with cost ci = iλi	

	

 	

. . .	

. . .	

i	

ci	

λi	

Theorem A1. Any algorithm that solves 	

the list-exploration problem with inputs of 	

pattern π can be forced to make mini {ci} 	

steps, even if the algorithm knows π.	

So we refer to c(π) = mini {ci} as the 	

intrinsic (worst-case) cost of the list-	

exploration problem with input pattern π. 	

Theorem A2. There is an algorithm that 	

solves the list-exploration problem (with 	

arbitrary inputs) in 	

O(c(π) ln min {m, c(π)}) steps,	

without knowing the input pattern π.	

Theorem A2. There is an algorithm that 	

solves the list-exploration problem (with 	

arbitrary inputs) in 	

O(c(π) ln min {m, c(π)}) steps,	

without knowing the input pattern π.	

Overview

•  Introduction and motivation
 Input-thrifty algorithms

•  List search
•  Hyperbolic dovetailing
•  Applications to input-thrifty

algorithms
•  Extensions & generalizations

Overview

•  Introduction and motivation
•  List search
•  Hyperbolic dovetailing
•  Extensions & generalizations
•  Applications to input-thrifty

algorithms

c = 1;	

repeat until some list end is reached	

	

for i = 1 to m	

	

 	

continue exploration of list i	

	

 	

 up to position c / i	

	

increment c	

Hyperbolic scan	

y = c / x, for increasing c	

Hyperbolic scan	

y = c / x, for increasing c	

Hyperbolic scan	

y = c / x, for increasing c	

Hyperbolic scan	

y = c / x, for increasing c	

Hyperbolic scan	

y = c / x, for increasing c	

y=c/x	

Why a hyperbolic scan?	

y=c/x	

All supported rectangles	

have area c	

y=c/x	

All supported rectangles	

have area c	

y=c/x	

All supported rectangles	

have area c	

y=c/x	

All supported rectangles	

have area c	

y=c/x	

All supported rectangles	

have area c	

y=c/x	

Total area under curve	

≈ c ln c	

	

Theorem A2. There is an algorithm that 	

solves the list-exploration problem (with 	

arbitrary inputs) in 	

O(c(π) ln min {m, c(π)}) steps,	

without knowing the input pattern π.	

Theorem A2. There is an algorithm that 	

solves the list-exploration problem (with 	

arbitrary inputs) in 	

O(c(π) ln min {m, c(π)}) steps,	

without knowing the input pattern π.	

Can we do better?	

Theorem A3. Any algorithm that solves 	

the list-exploration problem can be forced	

to make Ω (c* ln c*) steps, 	

even if the algorithm knows that the input	

pattern π satisfies c(π) = c* 	

y = c* / x	

. . .	

. . .	

y = c* / x	

. . .	

. . .	

Overview

•  Introduction and motivation
 Input-thrifty algorithms

•  List search
•  Hyperbolic dovetailing
•  Applications to input-thrifty

algorithms
•  Extensions & generalizations

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

Each list ends with a sign	

Search for one of each type	

+	

 +	

+	

_	

_	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

Each list ends with a sign	

Search for one of each type	

+	

 +	

+	

_	

_	

	

	

	

 p(1) p(2) . . . p(i) . . . p{m)	

+	

 +	

+	

_	

_	

Given previous solution it suffices to	

search for one specified sign (+)	

Hyperbolic scan	

y = c / x, for increasing c	

Modified hyperbolic scan:	

keep areas of supported 	

rectangles constant	

Modified hyperbolic scan:	

keep areas of supported 	

rectangles constant	

-	

Modified hyperbolic scan:	

keep areas of supported 	

rectangles constant	

-	

Modified hyperbolic scan:	

keep areas of supported 	

rectangles constant	

-	

+	

What about the average case?	

What about the average case?	

Similar results….	

What about the average case?	

Similar results….	

	

•  intrinsic cost is mini mλi/(m-i)	

•  hyperbolic scan remains log-competetive	

What about the average case?	

Similar results….	

	

•  intrinsic cost is mini mλi/(m-i)	

•  hyperbolic scan remains log-competetive	

Other generalizations…	

	

•  searching for a goal in a general symmetric tree	

•  searching for multiple goals	

Thanks for your attention

