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What about the average case?	
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•  intrinsic cost is mini mλi/(m-i)	


•  hyperbolic scan remains log-competetive	
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•  intrinsic cost is mini mλi/(m-i)	


•  hyperbolic scan remains log-competetive	





Other generalizations…	



	


•  searching for a goal in a general symmetric tree	



•  searching for multiple goals	





  

 
Thanks for your attention 










