CS 420
Convex Hulls

point set §

0 extreme points

convex-hull =
polygon whose vertices
are extreme points

convex-hull :
shape approx

convex-hull :
shape approx
linear separability

convex-hull :
shape approx
linear separability

convex combination

convex combinations

convex hull =
union of all
convex combinations

- convex hull =
intersection of all
half-spaces containing S

Convex hull CH(S)

* CH(S) is smallest convex set containing S.

* In R?, CH(S) is smallest area (or perimeter)
convex polygon containing S.

* In R?, CH(S) is union of all triangles formed by
triples of points in S.

Convex hull CH(S)

CH(S) is smallest convex set containing S.

In R?, CH(S) is smallest area (or perimeter)
convex polygon containing S.

In R?, CH(S) is union of all triangles formed by
triples of points in S.

None of these descriptions/properties yield
efficient algorithms; at best O(|S|3).

2-d convex hulls and sorting

* letT, .(n) and T.4(n) denote the worst case

SOr

complexities of the sorting and convex hull
problems (for input instances of size n)

2-d convex hulls and sorting

* letT,.(n) and T.4(n) denote the worst case
complexities of the sorting and convex hull
problems (for input instances of size n)

e we will show :
¢ T, .4(n)=T(n) + O(n)
* Tey(n) =T, (n) + O(N)

Graham Scan

1. Sort by Y-order; p1,p2,...,Pn-
2. Initialize. push (p,, stack), i =1,2.

3. for i =3 to n do
while / next, top, p; # Left-Turn
pop (stack)
push (p;, stack).

4. return stack.

5. Invented by R. Graham ’73. (Left and
Right convex hull chains separately.)

Subhash Suri UC Santa Barbara

Analysis of Graham Scan

1. Invariant: (pi,...,top(stack)) is convex. On
termination, points in stack are on C'H.

I ps Py
2. Orientation Test: D = I gz qy
L 1y 1y

/p,q,r is LEFT if D > 0, RIGHT if D <0,
and straight if D = 0.

3. After sorting, the scan takes O(n) time: in
each step, either a point is deleted, or
added to stack.

Subhash Suri UC Santa Barbara

Divide and Conquer

. Upper Tangent
e
S
L e |
cHA) [|
: e
« A e g CHE
e,
e

Sort points by X-coordinates.

Let A be the set of /2 leftmost points,
and B the set of /2 rightmost points.

e Recursively compute CH(A) and CH(B).

Merge CH(A) and CH(B) to obtain CH(S).

Subhash Suri UC Santa Barbara

Merging Convex Hulls

Lower Tangent

e a = rightmost point of CH(A).
e b = leftmost point of CH(B).

e while ab not lower tangent of CH(A) and
CH(B) do

1. while ab not lower tangent to CH(A)
set a =a— 1 (move a CW);

2. while ab not lower tangent to CH(B)
set b=>b+1 (move b CCW);

e Return ab

Subhash Suri UC Santa Barbara

Analysis of D&C

T(N) = 2T(N/2) + O(N)

. Upper Tangent
E\~~~~“:/f
e
. s | CcH®B
B
B

Initial sorting takes O(N log N) time.

Recurrence for divide and conquer

e O(N) for merging (computing tangents).

Recurrence solves to T'(N) = O(N log N).

Subhash Suri

UC Santa Barbara

Can hulls be merged more
efficiently?

What if hulls are not linearly
separated?

Other sorting-inspired algorithms

Can hulls be constructed more
efficiently?

Lower Bounds

Parabola
y=x
I
I
I
|
1
1
1
1
I
I
]
I
! ! 1 [[!
oox4 o x1l ™~ JaX2 %8
<7 x8 x9 x6 x10 x5

e Reduce sorting to convex hull.
e List of numbers to sort {zi,z2,...,2,}.
e Create point p; = (z;,77), for each i.

Convex hull of {p1,ps,...,p,} has points in
sorted z-order. = CH of n points must
take (2(nlogn) in worst-case time.

Subhash Suri UC Santa Barbara

Other approaches...

* Convex hull algorithms that avoid sorting:
— gift-wrapping (Jarvis) O(n h)
— discard/filter interior points (QuickHull)

|deas...

 More careful analysis of existing algorithms

|deas...

 More careful analysis of existing algorithms
* Try to discard non-extreme points quickly

Quick Hull Algorithm

Discard
these

Initialization Recursive Elimination

1. Form initial quadrilateral (), with left,
right, top, bottom. Discard points inside

Q.

2. Recursively, a convex polygon, with some
points “outside” each edge.

3. For an edge ab, find the farthest outside
point c. Discard points inside triangle abc.

4. Split remaining points into “outside”
points for ac and bc.

5. Edge ab on CH when no point outside.

Subhash Suri UC Santa Barbara

Complexity of QuickHull

Discard Di 4
he iscar
these these .7 . b

S

Initialization Recursive Elimination

1. Initial quadrilateral phase takes O(n) time.

2. T'(n): time to solve the problem for an
edge with n points outside.

3. Let nq,n, be sizes of subproblems. Then,

T(n) = 1 ifn=1
| n+T(n)+T(n:) whereny+ns<n

4. Like QuickSort, this has expected running
time O(nlogn), but worst-case time O(n?).

Subhash Suri UC Santa Barbara

|deas...

 More careful analysis of existing algorithms
* Try to discard non-extreme points quickly
* “wrap” around the extreme points

Efficient CH Algorithms

Gift Wrapping: [Jarvis ’73; Chand-Kapur ’70]

[} [)
N
. . b
o ! . e . ¢
\ | 7/ ~ \ |
/ N
| ® , N \\.)
\ ~
| | 7 ’ N N l
[X ! ’ o. N A !
W\ 1 \\\ \\ \\\ |
\ !) ~ . S \\q |
® we! e ®. "~ T S !
Wt --- R NN
Wb, - SIS N
Wiy, R Y
Wiy, [] @ === T2
N o @ a
\ll/ﬁ///
N
@ -

1. Start with bottom point p.

2. Angularly sort all points around p.

3. Point a with smallest angle is on C'H.
4. Repeat algorithm at a.

5. Complexity O(Nh); 3 < h=|CH| < N.
Worst case O(N?).

Subhash Suri UC Santa Barbara

What is the complexity of finding 2-d
convex hulls, in terms of n and h?

Llower bound of Q(n Ilg n)

Jarvis' algorithm is O(nh), beats the lower
pound when h is small

Lower Bounds

Parabola
y=x

e Reduce sorting to convex hull.
e List of numbers to sort {zi,z2,...,2,}.
e Create point p; = (z;,77), for each i.

e Convex hull of {p;,ps,...,p,} has points in
sorted z-order. = CH of n points must
take (2(nlogn) in worst-case time.

e More refined lower bound is Q(nlogh). LB
holds even for identifying the CH vertices.

Subhash Suri UC Santa Barbara

Output-Sensitive CH

1. Kirkpatrick-Seidel (1986) describe an
O(nlogh) worst-case algorithm. Always
optimal—linear when i = O(1) and
O(nlogn) when h = Q(n).

2. T. Chan (1996) achieved the same result
with a much simpler algorithm.

3. Remarkably, Chan’s algorithm combines
two slower algorithms (Jarvis and
Graham) to get the faster algorithm.

4. Key idea of Chan is as follows.

(a) Partition the n points into groups of
size m; number of groups is r = [n/m].

(b) Compute hull of each group with
Graham’s scan.

(c) Next, run Jarvis on the groups.

Subhash Suri UC Santa Barbara

Chan’s Algorithm

1. The algorithm requires knowledge of CH
size h.

2. Use m as proxy for h. For the moment,
assume we know m = h.

3. Partition P into r groups of m each.

4. Compute Hull(P;) using Graham scan,
i=1,2,...,m

5. po = (—00,0); p1 bottom point of P.
6. For £ =1 to m do

e Find ¢; € P, that maximizes the angle

! Pk—1Pki-

e Let pyi1 be the point among ¢; that
maximizes the angle /pi_1prq.

o If p;.1 = p; then return (pq,...,pg).

7. Return “m was too small, try again.”

Subhash Suri UC Santa Barbara

Illustration

Subhash Suri UC Santa Barbara

Time Complexity

e Graham Scan: O(rmlogm) = O(nlogm).

e Finding tangent from a point to a convex
hull in O(logn) time.

e Cost of Jarvis on r convex hulls: Each
step takes O(rlogm) time; total
O(hrlogm) = ((hn/m)logm) time.

e Thus, total complexity

(-2

e If m = h, this gives O(nlogh) bound.
e Problem: We don’t know h.

.
4y

Subhash Suri UC Santa Barbara

Finishing Chan

Hull(P)
o fort=1,2,... do

1. Let m = min(22t,n).
2. Run Chan with m, output to L.
3. If L # “try again” then return L.

1. Iteration t takes time O(nlog 22t) = O(n2%).

2. Max value of t = loglog h, since we succeed
t
as soon as 22 > h.

3. Running time (ignoring constant factors)

lglg h Iglg h
Z n2! = n Z 2t < p2ltieleh — oploh

4. 2D convex hull computed in O(nlogh)
time.

Subhash Suri UC Santa Barbara

Lower Bounds

Parabola
y=x

e Reduce sorting to convex hull.
e List of numbers to sort {zi,z2,...,2,}.
e Create point p; = (z;,77), for each i.

e Convex hull of {p;,ps,...,p,} has points in
sorted z-order. = CH of n points must
take (2(nlogn) in worst-case time.

e More refined lower bound is Q(nlogh). LB
holds even for identifying the CH vertices.

Subhash Suri UC Santa Barbara

Lower bounds revisited

e recall limitations of the reduction from
sorting argument

* need a stronger model than pairwise comparisons

Lower bounds revisited

e recall limitations of the reduction from
sorting argument

* need a stronger model than pairwise comparisons

— algebraic decision trees

Lower bounds revisited

e recall limitations of the reduction from

sorting argument
* need a stronger model than pairwise comparisons
— algebraic decision trees

* applies to strong version of CH problem (requires
ordered output)

* does not explain output-size sensitivity (dependence
on h)

Lower bounds revisited

e recall limitations of the reduction from

sorting argument
* need a stronger model than pairwise comparisons
— algebraic decision trees

* applies to strong version of CH problem (requires
ordered output)

* does not explain output-size sensitivity (dependence
on h)

— formulate decision problems as point-classification problems

Half-space intersection

\ : _

Half-swace intersectio

A
\ —

Half-space intersection

e suppose we have a witness to the non-
emptiness of the intersection—may as well be
the origin

* such half-spaces are defined by oriented lines
(directed so that origin lies to the left)

Polarity transform

 an arbitrary line L that avoids the origin has
the an equation of the form: ax + by -1=0

* view as directed line where points to /left
(respectively right) make ax + by -1 negative
(respectively, positive)

L: ax+by-1 =0

L: ax+by-1 =0

L: ax+by-1 =0
N: bx-ay =0

L: ax+by-1 =0
N: bx-ay =0

L: ax+by-1 =0
N: bx-ay =0
L:(ab)

L: ax+by-1 =0

N: bx-ay = 0
unit circle L:(ab)

,N
, OL*l = 1/I0LI
=+(a2 + b?)

L: ax+by-1 =0

o N: bx-ay = 0
unit circle L:(ab)

/ Op*l = 1/10pl
/ = V(a2 + b?)

p’:ax+by-1 =0

o N: bx-ay =0
unit circle p:(ab)

Properties

« [selfinverse] (p7) =p

Properties

e [selfinverse] (p”)" =p(and (L") =1L)

Properties

self inverse] (p7) =p

incidence preserving] if p belongs to L, then
L” belongstop”

Properties

* [selfinverse] (p°) =p

* [incidence preserving] if p belongs to L, then
L” belongstop”

» [sidedness reversing] if p lies to the left (right)
of L, then L” lies to the left (right) of p~

Properties

self inverse] (p7) =p

incidence preserving] if p belongs to L, then
L” belongs to p”

[sidedness reversing] if p lies to the left (right)
of L, then L” lies to the left (right) of p~

the line joining points p, and p, is the dual of
the point formed by the intersection of the
lines p,” and p,”

Equivalent problems

* [half-space intersection] finding all points
that lie to the left of the (primal) lines defining
the half-spaces

* [convex hull] finding all lines that lie to the
right of all of the (dual) points

* in both cases a succinct description is a

polygon (polytope); the boundary order is
preserved under duality.

Loose ends from earlier discussions

* half-space intersection problem

— how do we find a point in the common
intersection (if it exists) in general?

Loose ends from earlier discussions

* half-space intersection problem

— how do we find a point in the common
intersection (if it exists) in general?

* LP feasibility

Loose ends from earlier discussions

* half-space intersection problem

— how do we find a point in the common
intersection (if it exists) in general?

* LP feasibility
* the marriage-before-conquest convex hull
algorithm

— need to find an (upper) bridge between opposite
partitions. How do we do this efficiently?

Loose ends from earlier discussions

* half-space intersection problem

— how do we find a point in the common
intersection (if it exists) in general?

* LP feasibility
* the marriage-before-conquest convex hull
algorithm

— need to find an (upper) bridge between opposite
partitions. How do we do this efficiently?

e a2 variable (2-d) linear programming problem

Low-dimensional linear
programming

e [2-d] a deterministic linear time algorithm
— view as bridge-finding; candidate elimination
— general LP formulation (Megiddo)

— linear-time algorithms in higher dimensions

Low-dimensional linear
programming (cont.)

* an incremental approach
— in 1-d
— in 2-d
e (worst-case) analysis of deterministic implementation

* (expected-case) analysis of randomized
implementation

Low-dimensional linear
programming (cont.)

* extensions to higher dimensions
— Meggido’ s approach
— randomized incremental approach

Applications

 1-center problem...

— “pinned” subproblems
e uniqueness of solutions
* reductions

 other LP-type problems

