CS 420 Convex Hulls

O O O O 0 point set S

extreme points O

convex-hull =
 polygon whose vertices
 are extreme points

convex-hull: shape approx

 \mathbf{X} 0 \mathbf{X} 0 X \mathbf{X} O \mathbf{O} \mathbf{O}

convex-hull:
shape approx
linear separability

convex-hull:
shape approx
linear separability

convex combinations

convex hull =
 union of all
 convex combinations

Convex hull CH(S)

- CH(S) is smallest convex set containing S.
- In R², CH(S) is smallest area (or perimeter) convex polygon containing S.
- In **R**², CH(S) is union of all triangles formed by triples of points in S.

Convex hull CH(S)

- CH(S) is smallest convex set containing S.
- In R², CH(S) is smallest area (or perimeter) convex polygon containing S.
- In **R**², CH(S) is union of all triangles formed by triples of points in S.
- None of these descriptions/properties yield efficient algorithms; at best $O(|S|^3)$.

2-d convex hulls and sorting

 let T_{sort}(n) and T_{CH}(n) denote the worst case complexities of the sorting and convex hull problems (for input instances of size n)

2-d convex hulls and sorting

- let $T_{sort}(n)$ and $T_{CH}(n)$ denote the worst case complexities of the sorting and convex hull problems (for input instances of size n)
- we will show :
 - $T_{cort}(n) \le T_{CH}(n) + \Theta(n)$
 - $T_{CH}(n) \le T_{sort}(n) + \Theta(n)$

Graham Scan

- 1. Sort by Y-order; $p_1, p_2, ..., p_n$.
- 2. Initialize. push $(p_i, stack)$, i = 1, 2.
- 3. for i = 3 to n do while \angle next, top, $p_i \neq$ Left-Turn pop (stack) push $(p_i, stack)$.
- 4. return stack.
- 5. Invented by R. Graham '73. (Left and Right convex hull chains separately.)

Analysis of Graham Scan

- 1. Invariant: $\langle p_1, \ldots, top(stack) \rangle$ is convex. On termination, points in stack are on CH.
- **2. Orientation Test:** $D = \begin{bmatrix} 1 & p_x & p_y \\ 1 & q_x & q_y \\ 1 & r_x & r_y \end{bmatrix}$

 $\angle p, q, r$ is LEFT if D > 0, RIGHT if D < 0, and straight if D = 0.

3. After sorting, the scan takes O(n) time: in each step, either a point is deleted, or added to stack.

Divide and Conquer

- Sort points by *X*-coordinates.
- Let A be the set of n/2 leftmost points, and B the set of n/2 rightmost points.
- Recursively compute CH(A) and CH(B).
- Merge CH(A) and CH(B) to obtain CH(S).

Merging Convex Hulls

Lower Tangent

- a =rightmost point of CH(A).
- b =leftmost point of CH(B).
- while ab not lower tangent of CH(A) and CH(B) do
 - 1. while ab not lower tangent to CH(A) set a = a 1 (move a CW);
 - 2. while ab not lower tangent to CH(B) set b = b + 1 (move b CCW);
- Return ab

Analysis of D&C

- Initial sorting takes $O(N \log N)$ time.
- Recurrence for divide and conquer T(N) = 2T(N/2) + O(N)
- O(N) for merging (computing tangents).
- Recurrence solves to $T(N) = O(N \log N)$.

Can hulls be merged more efficiently?

What if hulls are not linearly separated?

Other sorting-inspired algorithms

Can hulls be constructed more efficiently?

Lower Bounds

- Reduce sorting to convex hull.
- List of numbers to sort $\{x_1, x_2, \ldots, x_n\}$.
- Create point $p_i = (x_i, x_i^2)$, for each i.
- Convex hull of $\{p_1, p_2, \dots, p_n\}$ has points in sorted x-order. \Rightarrow CH of n points must take $\Omega(n \log n)$ in worst-case time.

Other approaches...

- Convex hull algorithms that avoid sorting:
 - gift-wrapping (Jarvis) O(n h)
 - discard/filter interior points (QuickHull)

Ideas...

More careful analysis of existing algorithms

Ideas...

- More careful analysis of existing algorithms
- Try to discard non-extreme points quickly

Quick Hull Algorithm

- 1. Form initial quadrilateral Q, with left, right, top, bottom. Discard points inside Q.
- 2. Recursively, a convex polygon, with some points "outside" each edge.
- 3. For an edge ab, find the farthest outside point c. Discard points inside triangle abc.
- 4. Split remaining points into "outside" points for ac and bc.
- 5. Edge ab on CH when no point outside.

Complexity of QuickHull

- 1. Initial quadrilateral phase takes O(n) time.
- 2. T(n): time to solve the problem for an edge with n points outside.
- 3. Let n_1, n_2 be sizes of subproblems. Then,

$$T(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 1 \\ n + T(n_1) + T(n_2) & \text{where } n_1 + n_2 \le n \end{array} \right\}$$

4. Like QuickSort, this has expected running time $O(n \log n)$, but worst-case time $O(n^2)$.

Ideas...

- More careful analysis of existing algorithms
- Try to discard non-extreme points quickly
- "wrap" around the extreme points

Efficient CH Algorithms

Gift Wrapping: [Jarvis '73; Chand-Kapur '70]

- 1. Start with bottom point p.
- **2.** Angularly sort all points around p.
- 3. Point a with smallest angle is on CH.
- 4. Repeat algorithm at a.
- 5. Complexity O(Nh); $3 \le h = |CH| \le N$. Worst case $O(N^2)$.

What is the complexity of finding 2-d convex hulls, in terms of *n* and *h*?

- Lower bound of $\Omega(n \log n)$
- Jarvis' algorithm is O(nh), beats the lower bound when h is small

Lower Bounds

- Reduce sorting to convex hull.
- List of numbers to sort $\{x_1, x_2, \ldots, x_n\}$.
- Create point $p_i = (x_i, x_i^2)$, for each i.
- Convex hull of $\{p_1, p_2, \dots, p_n\}$ has points in sorted x-order. \Rightarrow CH of n points must take $\Omega(n \log n)$ in worst-case time.
- More refined lower bound is $\Omega(n \log h)$. LB holds even for identifying the CH vertices.

Output-Sensitive CH

- 1. Kirkpatrick-Seidel (1986) describe an $O(n \log h)$ worst-case algorithm. Always optimal—linear when h = O(1) and $O(n \log n)$ when $h = \Omega(n)$.
- 2. T. Chan (1996) achieved the same result with a much simpler algorithm.
- 3. Remarkably, Chan's algorithm combines two slower algorithms (Jarvis and Graham) to get the faster algorithm.
- 4. Key idea of Chan is as follows.
 - (a) Partition the n points into groups of size m; number of groups is $r = \lceil n/m \rceil$.
 - (b) Compute hull of each group with Graham's scan.
 - (c) Next, run Jarvis on the groups.

Chan's Algorithm

- 1. The algorithm requires knowledge of CH size h.
- 2. Use m as proxy for h. For the moment, assume we know m = h.
- **3.** Partition P into r groups of m each.
- **4.** Compute $Hull(P_i)$ using Graham scan, i = 1, 2, ..., r.
- **5.** $p_0 = (-\infty, 0)$; p_1 bottom point of P.
- **6.** For k = 1 to m do
 - Find $q_i \in P_i$ that maximizes the angle $\angle p_{k-1}p_kq_i$.
 - Let p_{k+1} be the point among q_i that maximizes the angle $\angle p_{k-1}p_kq$.
 - If $p_{k+1} = p_1$ then return $\langle p_1, \dots, p_k \rangle$.
- 7. Return "m was too small, try again."

Subhash Suri UC Santa Barbara

Illustration

Subhash Suri UC Santa Barbara

Time Complexity

- Graham Scan: $O(rm \log m) = O(n \log m)$.
- Finding tangent from a point to a convex hull in $O(\log n)$ time.
- Cost of Jarvis on r convex hulls: Each step takes $O(r \log m)$ time; total $O(hr \log m) = ((hn/m) \log m)$ time.
- Thus, total complexity

$$O\left(\left(n + \frac{hn}{m}\right)\log m\right)$$

- If m = h, this gives $O(n \log h)$ bound.
- Problem: We don't know h.

Subhash Suri

Finishing Chan

$\mathbf{Hull}(P)$

- for t = 1, 2, ... do
 - 1. Let $m = \min(2^{2^t}, n)$.
 - 2. Run Chan with m, output to L.
 - 3. If $L \neq$ "try again" then return L.
- 1. Iteration t takes time $O(n \log 2^{2^t}) = O(n2^t)$.
- 2. Max value of $t = \log \log h$, since we succeed as soon as $2^{2^t} > h$.
- 3. Running time (ignoring constant factors)

$$\sum_{t=1}^{\lg \lg h} n2^t = n \sum_{t=1}^{\lg \lg h} 2^t \le n2^{1+\lg \lg h} = 2n \lg h$$

4. 2D convex hull computed in $O(n \log h)$ **time.**

Subhash Suri UC Santa Barbara

Lower Bounds

- Reduce sorting to convex hull.
- List of numbers to sort $\{x_1, x_2, \ldots, x_n\}$.
- Create point $p_i = (x_i, x_i^2)$, for each i.
- Convex hull of $\{p_1, p_2, \dots, p_n\}$ has points in sorted x-order. \Rightarrow CH of n points must take $\Omega(n \log n)$ in worst-case time.
- More refined lower bound is $\Omega(n \log h)$. LB holds even for identifying the CH vertices.

Subhash Suri UC Santa Barbara

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees
 - applies to strong version of CH problem (requires ordered output)
 - does not explain output-size sensitivity (dependence on h)

- recall limitations of the reduction from sorting argument
 - need a stronger model than pairwise comparisons
 - algebraic decision trees
 - applies to strong version of CH problem (requires ordered output)
 - does not explain output-size sensitivity (dependence on h)
 - formulate decision problems as point-classification problems

Half-space intersection

Half-space intersection

- suppose we have a witness to the nonemptiness of the intersection—may as well be the origin
- such half-spaces are defined by oriented lines (directed so that origin lies to the left)

Polarity transform

- an arbitrary line L that avoids the origin has the an equation of the form: ax + by -1 = 0
- view as directed line where points to *left* (respectively *right*) make ax + by -1 negative
 (respectively, positive)

$$L: ax+by-1=0$$

$$L: ax+by-1=0$$

L:
$$ax+by-1 = 0$$

$$N: bx-ay = 0$$

L:
$$ax+by-1 = 0$$

$$N: bx-ay = 0$$

L:
$$ax+by-1 = 0$$

N: $bx-ay = 0$
L*: (a,b)

• [self inverse] $(p^*)^* = p$

• [self inverse] $(p^*)^* = p$ (and $(L^*)^* = L$)

- [self inverse] $(p^*)^* = p$
- [incidence preserving] if p belongs to L, then
 L* belongs to p*

- [self inverse] $(p^*)^* = p$
- [incidence preserving] if p belongs to L, then
 L* belongs to p*
- [sidedness reversing] if p lies to the left (right)
 of L, then L* lies to the left (right) of p*

- [self inverse] $(p^*)^* = p$
- [incidence preserving] if p belongs to L, then
 L* belongs to p*
- [sidedness reversing] if p lies to the left (right)
 of L, then L* lies to the left (right) of p*
- the line joining points p_1 and p_2 is the dual of the point formed by the intersection of the lines p_1^* and p_2^*

Equivalent problems

- [half-space intersection] finding all points that lie to the left of the (primal) lines defining the half-spaces
- [convex hull] finding all lines that lie to the right of all of the (dual) points
- in both cases a succinct description is a polygon (polytope); the boundary order is preserved under duality.

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?
 - LP feasibility

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?
 - LP feasibility
- the marriage-before-conquest convex hull algorithm
 - need to find an (upper) bridge between opposite partitions. How do we do this efficiently?

- half-space intersection problem
 - how do we find a point in the common intersection (if it exists) in general?
 - LP feasibility
- the marriage-before-conquest convex hull algorithm
 - need to find an (upper) bridge between opposite partitions. How do we do this efficiently?
 - a 2 variable (2-d) linear programming problem

Low-dimensional linear programming

- [2-d] a deterministic linear time algorithm
 - view as bridge-finding; candidate elimination
 - general LP formulation (Megiddo)
 - linear-time algorithms in higher dimensions

Low-dimensional linear programming (cont.)

- an incremental approach
 - in 1-d
 - in 2-d
 - (worst-case) analysis of deterministic implementation
 - (expected-case) analysis of randomized implementation

Low-dimensional linear programming (cont.)

- extensions to higher dimensions
 - Meggido's approach
 - randomized incremental approach

Applications

1-center problem...

- "pinned" subproblems
 - uniqueness of solutions
 - reductions

other LP-type problems