
Submodular welfare maximization

Serial Number: 9

April 24, 2013

1 Introduction

We study different variants of the welfare maximization problem in combinato-
rial auctions. Assume there are n buyers interested in m items. Indeed they
have different valuations on each item, i.e. buyer i has a valuation of wi(j)
on item j. In the simplest model, a collection of items S worths

∑
j∈S wi(j)

for buyer i; However, in practice, collection of items might have different values
than the sum of values of individual items. Therefore, in a more accurate model,
we should take this into account and define the valuation of each buyer as a real
valued function on the family of subsets of items, i.e. wi : 2[m] → R+. Our goal
is to partition these items among buyers so as to maximize the total welfare.
More precisely, we partition the set of items into subsets S1, . . . , Sn and give
bundle Si to buyer i in order to maximize

∑n
i=1 wi(Si).

Based on the above discussion, not only we need the valuation of each person
on each item, but also we need to present the valuations on subsets of items
which requires O(n2m) bits of data to be stored as the input of the algorithm.
This huge amount of data is exponential in the number of items, which could
make practical difficulties especially when the number of items, m, is very large.
Hence, instead of presenting the whole data to the algorithm, we employ an
oracle who answers queries when asked. Usually, two types of oracles have been
considered:

Value oracle this type of oracle answers the questions of the type “What is
the value of wi(S) for a person 1 ≤ i ≤ n and a collection of items S?”
This is obviously the simplest type of oracle who just looks at the database
of valuations with zero computational overload.

Demand oracle unlike value oracle which does not compute anything, in this
case we have access to a more powerful oracle which has computational
power to solve a maximization problem. In fact, we have access to a
powerful black box which can solve the following problem for us in zero
time: assume p : [m] → R is a price function on items, find the set S
which maximizes wi(S)−

∑
j∈S pj .
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Even if we employ the powerful demand oracle, the problem could be very
hard to compute in general. For an example, consider the scenario in which
each buyer is only interested in an specific subset of items, denoted by Ti for
buyer i. Therefore he is satisfied when he collects all the items in Ti, paying no
attention to additional items, i.e. wi(S) = 1 if Ti ⊆ S and 0 otherwise. In this
case, both value and demand queries are trivial, but the problem is equivalent to
the set packing problem which has no m−1/2+ε-approximation unless P = NP
[H̊as99, Zuc07]. Based on this discussion, we restrict the set of permissible
utility functions to obtain non-trivial positive results. In particular, we add two
assumptions which are reasonable in practice.

The first assumption is monotonicity. We expect a person to be more satis-
fied when he obtains a larger set of items, i.e. we do not have negative valuations
or “disgusting” items. This translates to monotonicity of functions wi:

Definition 1.1. A function f : 2X → R is monotone if f(S) ≤ f(T ) whenever
S ⊆ T .

The other assumption is related to the improvement in gains by giving
extra items to players. In practice, a reach person is less excited by obtaining a
Porsche than a relatively poor person. Therefore, it is reasonable to assume that
adding an extra item to a large set is less attractive than adding it to a relatively
smaller one. This translates to submodularity of functions. A function f defied
on the family of subsets of a set is called submodular if

f(S ∪ {j}) ≥ f(T ∪ {j}) S ⊂ T.

It could be shown that this definition of submodular functions is equivalent to
the following:

Definition 1.2. A discrete function f : 2X → R is submodular if f(S ∪ T ) +
f(S ∩ T ) ≤ f(S) + f(T ). Usually we also assume that f(∅) = 0.

Adding these two assumptions leads us to Submodular Welfare Problem.
Conclusively,

Definition 1.3 (Submodular welfare maximization). m buyers and n items
are given. Each buyer has a monotone submodular valuation wi : 2[m] → R+

which is his interest in different subsets of items . The goal is to partition items

into disjoint sets S1, S2, · · · , Sn in order to maximize
n∑
i=1

wi(Si).

Submodular functions appear in other areas like rank functions of matroids,
in covering problems, graph cut problems and facility location problems [Edm70,
Lov, Sch03]. It could be shown that minimization of submodular functions
could be done in polynomial time ([IFF01, Sch00]), however maximization of
such functions is typically NP-hard. First studies on maximization of monotone
submodular functions is due to Nemhauser, Wolsey and Fisher in the 1970s
[NWF78, FNW78, NW78].
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2 Algorithmic results

We can categorize welfare maximization problem based on two parameters: the
first one is different classes of valuation functions, wi. Usually assumptions on
wi are monotonicity and submodularity. The other parameter is the order in
which items arrive. We may assume that the division process takes place when
all the items and valuations are known (offline) items arrive one by one and
valuations are known for so far received items and each item should be assigned
upon arrival (online). Results on offline and online welfare maximization are
given in the following. It should be noted that we do not seek the exact solution,
instead an approximation of the solution suffices, i.e. a solution that is within a
coefficient of the answer is acceptable.

2.1 Offline Model

In offline model, we should assign each item to a player after receiving the
whole set of items. In [Von08], a randomized continuous greedy algorithm for
the submodular welfare problem is derived which is a (1−1/e)− approximation.
Interestingly, in the special case when the valuations of players are identical, the
optimal answer is obtained by uniform random solution. It is shown using infor-
mation theoretic lower bounds that solving the problem more accurately (with
better approximation factor), an exponential number of value queries is neces-
sary. Furthermore, in this paper the problem is analyzed for the two classes
subadditive and superadditive valuation functions. A set function f is said to
be subadditive iff f(S) + f(T ) ≥ f(S ∪ T ) and is said to be superadditive iff
for disjoint sets S and T , f(S) + f(T ) ≤ f(S ∪ T ). Note that subadditivity is
similar to submodularity, however, submodularity is a stronger condition. It is

shown that approximation factors 1√
m

and
√
logm
m respectively for subadditive

and superadditive valuations are the best approximation factors which can be
obtained by asking a polynomial number of value queries, i.e. better approxi-
mation factors require asking super polynomial number of queries. This shows
that the above approximation factors are the best possible ones.

2.2 Online Model

Definition 2.1. m items are arriving online, and each item should be allocated
upon arrival to one of n agents whose interest in different subsets of items is
expressed by valuation functions wi : 2[m] → R+. Also it is assumed that we
only know the agents’ valuations on items arrived so far. The goal is to maximize
n∑
i=1

wi(Si) where Si is the set of items allocated to agent i.

Since we should decide immediately upon arrival which person to give the
current item, the simplest framework is that we give the current item to the
person who gets excited the most, i.e. we assign the arrived item to the player
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whose welfare increases the most. Fisher, Nemhauser and Wolsey who worked
on problems involving maximization of submodular functions, introduced this
greedy algorithm [NWF78, FNW78, NW78]. This greedy strategy is shown to
be 1/2-competitive when valuation functions are monotone and submodular.

An special case of this problem is reduced to online bipartite matching ana-
lyzed by Karp, Vazirani and Vazirani [KVV90]. In the online bipartite matching
problem, one vertex of the first part of the graph as well as its connections is
given at a time, and upon receiving this information, we should decide which
vertex of the second part to match to it so as to maximize the size of the
matching at the end of the day. The following restriction on valuation func-
tions reduces online welfare maximization to online bipartite matching; Assume
each agent i is completely satisfied by only one item in an specific set N(i), i.e.
wi(S) = min{|S ∩N(i)|, 1}. Having this assumption, we form a bipartite graph
in which the first part and second parts are representatives of the agents and
the items respectively. Connect an agent i to his N(i) interested items. Then
online welfare maximization reduced to online bipartite matching, for which
there exists an elegant (1−1/e)-competitive randomized algorithm in [KVV90].
Note that this is an improvement on the greedy 1/2-competitive solution.

3 Truthful Mechanism Design

So far we have assumed that the valuations of players are known to us when
allocating the items. However, in practice, we might not have access to actual
valuations. In this setting the aim of the mechanism designer is to design a com-
putationally efficient mechanism in which he hopes that the agents are truthful
and that achieves with an approximation factor the optimal solution found by
the former version of the problem in which all the information is provided in ad-
vance. Now we give a formal definition of what it means for mechanism designer
to hope that agents are incentive compatible ([DRY11]):

Definition 3.1. A mechanism with allocation and payment rules A and p is
truthfull-in-expectation if every player always maximizes it’s expected payoff by
truthfully reporting it’s valuation function meaning that

E[vi(A(v))− pi(v)] ≥ E[vi(A(v′i, v−i))− pi(v
′
i, v−i)] (3.1)

for every player i, (true) valuation function vi, (reported) valuation function v′i,
and (reported) valuation functions v−i of the other players. The expectation in
(3.1) is over the coin flips of the mechanism.

In [DRY11], a (1 − 1/e)-approximation truthful in expectation mechanism
for coverage valuations is derived. Also, it is shown, assuming P ! = NP , even
for known and explicitly given coverage valuations, the approximation factor
could not be improved. However, for submodular valuations, no truthful-in-
expectation mechanism exists [DV11].
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It is worth noting that without incentive-compatibility constraints, the wel-
fare maximization problem with submodular bidder valuations is completely
solved. As was mentioned before, a (1 − 1/e)-approximation algorithm for the
problem exists [Von08].

4 Applications of submodular optimization

As was stated before, submodular optimization has applications in other prob-
lems and areas. In this section we give some examples of such applications. In
4.1, we consider applications of submodular optimization in social network prob-
lems in which the most influential subgroup of a society is of our concern. In 4.2
we analyze the problem of finding correspondent words in translated sentences
called word alignment. In 4.3, we want to summarize a number of related docu-
ments. In all of these problem, an optimization problem is introduced for which
the correspondent objective function is submodular and efficient maximization
methods for this class of functions are used to solve the problem.

4.1 Social Network

Assume you have a product and you want to advertise it in Facebook, but you
have a limited budget and hence you can present your advertisement to a lim-
ited number of Facebook users. Indeed, some users are more social and effective
in the society while some others are isolated. Social users can help distribute
the information while the capability of isolated individuals for doing so is small.
Therefore it is reasonable to present your product to the most influential nodes
of the society. Domninigos and Richardson first posed this problem as a funda-
mental algorithmic problem. The optimization problem of finding such nodes
is NP-hard in general, however acceptable approximation solutions exist for the
problem. Using an analysis framework based on submodular functions, it is
shown that a natural greedy algorithm, one can find a solution which is within
63% of the optimal solution of the problem [KKT03].

4.2 Word Alignment

Assume that we have a sentence in English as well as its French translation
and we want to see the correspondence of the words in the two sentences so
that we can know which French words correspond to each English word in
the sentence. In general, we can model any correspondence between the two
sentences by a bipartite graph. The nodes in the first part are the words in
English while the nodes in the second part are the words in French. Each
bipartite graph is uniquely determined by the set of its edges (say A) which
is a subset of the collection of all the edges (say V ). Assume that we have
a function f which measures the quality of a correspondence A ⊂ V as a real
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nonnegative number. The words alignment problem is equivalent to maximizing
f : 2V → R+ under certain constraints. When f is monotone and submodular,
near-optimal solutions for this problem exit [LB11].

4.3 Document summarization

Assume we have a collection of related documents which we want to summa-
rize. The way to approach this problem is to define appropriate objective func-
tions and optimization problems. This problem is called multi-document sum-
marization. A number of appropriate objective functions could be found in
[CG98, FV0, TO09, RFHT10, SL10]. It is seen that these well-established sum-
marization methods correspond to submodular function optimization [LB11].
Therefore, simple greedy algorithms for monotone submodular function maxi-
mization could be used for this problem to guarantee a summarization which is
almost as good as the best possible solution obtained by explicitly solving the
optimization problem.
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