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1 Introduction

Recently, the rapidly increasing popularity of online social networking sites such
as Facebook, Twitter, and Google+ opens up great opportunities for large-scale
viral marketing campaigns. Viral marketing, first introduced to the data min-
ing community by Domingos and Richardson [6], is a cost-effective marketing
strategy that promotes products by giving free or discounted items to a se-
lected group of highly influential individuals (also called seeds), in the hope
that through word-of-mouth effects, a large number of adoption will occur.

Motivated by viral marketing, influence maximization has emerged as a key
computational problem concerning the propagation of innovations and technol-
ogy adoptions through social networks. In a seminal paper, Kempe et al. [12] for-
mulated influence maximization as follows. Given a directed graph G = (V,E)
representing a social network, and a positive integer k, find k users, such that by
targeting them, the expected spread of influence is maximized under a certain
propagation model. Here, “targeting” means giving a buyer free or discounted
samples so that she adopts the product, and k represents the company’s budget,
i.e., the maximum number of samples it is willing to give away.

The bulk majority of research in this field assumes that there is only one
company promoting one product, and there is no competition. However, in
real world, there are often multiple companies providing comparable products
and fight for market share, e.g., Apple vs. Samsung in smartphones, Canon vs.
Nikon in digital SLR cameras, and Sony vs. Microsoft in video game platforms.
Since those consumer technologies are usually not free to adopt, it is unlikely
that one person will purchase from more than one company in a short period of
time. Therefore, competitions naturally exist, and recognizing this, there has
been recent work proposing competitive influence propagation models and tackle
influence maximization problems under such models [1, 5, 4, 11, 16, 3, 2, 13].

However, there are two missing pieces in most previous work. First, they
focus on the optimizing an objective for a single company and do not fully
consider strategic interactions among companies. Second, it is often assumed
that a marketing company has complete knowledge of the social network graph
and can directly mime influential seeds from it. This may not be the case in
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reality, as a network graph is owned as critical and proprietary data by the
social network operator, e.g., Facebook, Twitter, or Google, and hence may not
be readily available to “seed seekers”.

In this work, we address the above issues by proposing a game-theoretic
framework and study companies’ behaviours in the proposed game. We model
a competitive viral marketing campaign as a strategic game, called the the
competitive viral marketing game, hosted by the social network owner which
we refer to as the host hereafter. The host designs a mechanism for the game
such that two goals are achieved: First, the collective spread of influence over
all companies is maximized, so that it maintains good reputation for future
business. Second, fairness is ensured, in the sense that the more a company
invest in the campaign, the higher return (utility) it can expect from the game.
Each competing company is modelled as an agent participating in the game.
We then provide a sufficient condition for the existence of pure-strategy Nash
equilibria.

The rest of the paper is organized as follows. Section 2 introduce neces-
sary background knowledge and discuss representative related work. Section 3
describes the competitive viral marketing game and its properties. Finally, Sec-
tion 4 concludes the paper and discusses possible directions for future work.

2 Background and Related Work

2.1 Influence Maximization

Kempe et al. [12] introduce influence maximization and study it on two propaga-
tion models: Independent Cascade (IC) and Linear Threshold (LT) originated in
mathematical sociology [7, 10]. In their framework, a social network is modelled
as a directed graph G = (V,E), with nodes representing individuals and edges
representing social relationship between nodes. Each edge (u, v) ∈ E labeled by
an influence weight pu,v, capturing the extent to which v will be influenced by
u once u adopts a new technology or product. The dynamics of an influence
diffusion process proceed in discrete time steps. At any given time step, each
node is either active (i.e., being an adopter) or inactive. Initially, all nodes are
inactive. At time 0, a set S of seeds are activated and new activations start
spreading over the network in a probabilistic manner based on the propagation
model. The process quiesces when no more nodes can be activated, and once
activated, nodes remain active.

The expected spread of influence of a set S, denoted by σ(S), is defined as
the expected number of active nodes by the end of diffusion. The influence
maximization problem, given as input G = (V,E) and k, asks for a set S ⊆
V , |S| ≤ k, such that σ(S) is maximized. Under both IC and LT models,
the problem is NP-hard [12]. Kempe et al., however, show that the influence
function σ(S) is monotone (i.e., σ(S) ≤ σ(T ) whenever S ⊆ T ) and submodular
(i.e., σ(S∪{w})−σ(S) ≥ σ(T∪{w})−σ(T ) for any S ⊆ T and w ∈ V \T ). With
those two desired properties, a simple greedy algorithm which in each iteration
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Algorithm 1: Greedy (G = (V,E), k, σ)

1 S ← ∅;
2 for i = 1→ k do
3 w ← arg maxu∈V \S [σ(S ∪ {u})− σ(S)];

4 S ← S ∪ {w};
5 Output S;

greedily extends the seed set S with the node w providing the largest marginal
influence σ(S ∪ {w}) − σ(S) gives a (1 − 1/e)-approximation to the optimum
[14, 12] (see Algorithm 1).

2.2 Competitive Viral Marketing

There have been some recent studies on competitive viral marketing, by extend-
ing the IC or the LT model. A common theme is that they all focus on the client
perspective, and some of them are restricted to just two companies.

Bharathi et al. [1] proposed a natural extension to the IC model to incor-
porate competitions and show that the last player to select the seed set can
apply the greedy algorithm to obtain a (1− 1/e)-approximation to the optimal
strategy. Carnes et al. [5] study the problem from the “follower’s perspective”.
The follower is the player trying to introduce a new product into an environ-
ment where a competing product already exists, and the follower knows the
early adopters of its competitors. Under their models, the influence function
is monotone and submodular, and thus the greedy algorithm can be applied to
provide approximation guarantees. Later, Budak et al. [4] and Chen et al. [11]
studied the problem of influence blocking maximization, where one entity tries
to block the influence propagation of its competitor as much as possible, under
extended IC and LT models respectively. Both of their models involve only two
entities (clients) . Pathak et al. [16] propose an extension of the voter model to
study multiple cascades. Borodin et al. [3] propose extensions to the LT model
to deal with competing products.

More recently, Borodin et al. [2] and Lakshmanan et al. [13] studied com-
petitive viral marketing from the host’s perspective: [2] designed strategy-proof
mechanisms whose goal is to maximize the overall influence spread and avoid the
situation where companies can achieve a higher utility by declaring a lower bud-
get to the host. [13] focuses on models under which the overall influence spread
can be approximated within a factor of 1 − 1/e by the aforementioned greedy
algorithm, and studies the problem of fairly allocating the greedily chosen global
seed set to participating companies, based on reported budgets. Interestingly,
the fair allocation mechanism proposed in [13] guarantees that underreporting
budgets is suboptimal for companies, but it fails to address a potential issue
that companies might still behave strategically and hence undermine the entire
campaign. Therefore, in this paper we attempt to close this gap by making
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explicit game-theoretic connections to [13].

3 The Competitive Viral Marketing Game and
Its Properties

3.1 Problem Setting

In this section, we first introduce necessary notations and definitions, and then
describe the assumptions on influence propagation models applicable to our
framework.

Notations. Let N = {1, 2, . . . , n} be the set of n competing companies. We
denote by ki the budget of company i, ∀i ∈ N . For each company i, the host
will allocate to it a seed set Si ⊆ V with |Si| = ki. For simplification, we assume
that each targeted seed will only receive a sample from one company. Hence,
all seed sets are pairwise disjoint, i.e., Si ∩ Sj = ∅, whenever i 6= j. This can be
justified, when, for example, the host does not want its users to be disturbed
too much by receiving multiple samples from different advertisers.

We call S = S1 ∪ S2 ∪ . . . ∪ Sn – the union of all seed sets – the global seed
set. On the other hand, reversely, given any set S ⊆ V such that |S| =

∑
i ki,

we say that (S1, S2, . . . , Sn) is a n-partition of S if and only if Si and Sj are
disjoint, ∀i 6= j, i ∈ N, j ∈ N , and |Si| = ki,∀i ∈ N . Also, we denote by S−i
the vector comprising all individual seed sets excluding Si, and ki the budget
profile comprising the budgets of all companies excluding ki. Finally, we use
σ(S) to represent the expected collective spread of influence over all companies
when S is the global seed set, and σ(Si, S−i) to denote the expected influence
spread resulted for company i when Si is allocated to i.

Model Assumptions. Notice that our framework does not necessarily assume
a particular competitive influence propagation model to work with, but rather
we make the following assumptions in terms of the properties that we expect
any applicable model to have.

1. The collective influence spread is equal to the sum of influence spread of
all companies’. That is, given k1, k2, . . . , kn, for any S ⊆ V , |S| =

∑
i ki,

and any n-partition of S, it holds that σ(S) =
∑

i σi(Si, S−i).

2. The collective influence function σ(S) is monotone and submodular w.r.t.
the global seed set S.

3. The individual influence function σi(Si, S−i) is monotone and submodular
w.r.t. i’s own seed set Si, ∀i ∈ N .

4. Given a global seed set S and an arbitrary Si ⊆ S with |Si| = ki the
influence spread for company i is independent of how other seeds get
allocated. That is, σi(Si, S−i) remains the same regardless of the exact
shape of S−i provided that Si is held constant.
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As long as a propagation model satisfies all the above properties, our analysis
will apply. Examples of such models include the K-LT model proposed by
Lakshmanan et al. [13] and the OR model proposed by Borodin et al. [3]. We
argue that the properties are abstract but reasonably natural. Besides, they are
desired partially due to technical concerns such as computational tractability.
We omit the detailed model definitions and justifications (which can be found
in [13] and [3]), since it is not the focus of this work.

3.2 Game Formulation

The competitive viral marketing game G = 〈N,A, u〉 is formulated as follows.
The set of agents is exactly the set of all participating companies, and hereafter
we use agent and company interchangeably to refer to an competing entity. For
each agent i, its set Ai of available actions consists of all budget numbers i can
choose to report to the host. Since the social network has |V | nodes in total,
Ai = {0, 1, 2, . . . , |V |}, ∀i ∈ N . Thus, A = A1 × A2 × . . . × An. Notice that
some action profile in A will render the seed selection and partition impossible.
For example, suppose all declared budgets are greater than |V |/n; this leads
to

∑
i ki ≥ |V |, making it impossible for the host to proceed. As we shall see

later, due to (1) the mechanism designed for this game, (2) expected influence
spread is typically low in real-world social networks (compared to the size of
the network), and (3) agent’s budgetary concerns, the above situation can be
avoided in the equilibrium of the game.

Recall that the host has a two-fold goal: influence maximization and fair
allocation. First, given budgets reported by agents, it wants to maximize the
collective influence spread over all agents, so that it fetches as much revenue as
possible and in the mean time maintains good reputations for future business.
Second, it wants to ensure that the allocation of seeds is as fair as possible, such
that agents invest more in the campaign (reporting higher budgets) will receive
higher expected return than those who invest less.

Lakshmanan et al. [13] proposed a seed allocation scheme that not only
guarantees a (1 − 1/e)-approximation to the influence maximization objective
but also optimizes the fairness objective. First, each agent i reports its budget
ki to the host. An agent’s budget is privately held information and is not known
to any other agent. Then, the host selects a total number of

∑
i ki seeds from

the network, which forms the global seed set S. It does so by running the greedy
approximation algorithm (cf. Algorithm 1), and due to submodularity of σ(S),
the (1 − 1/e) approximation can be achieved for the influence maximization
objective. After that, the host partitions S in such a way that the influence
spread for each agent is proportional to their reported budgets. In other words,
σi(Si, S−i) is as close to ki∑

j kj
σ(S) as possible.

As mentioned in Section 2, [13] ignores game-theoretic implications in this
fair allocation process. In particular, it is not clear that how agents should come
up with their budget demand, i.e., what dictates their choices? Also, although
Borodin et al. [2] also formulates a game-theoretic framework, too, they assume
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that each agent will magically have a “truthful” budget demand in mind. Notice
that agents are rational and self-interested, seeking to maximize utility (profit,
if we speak of companies), and hence an agent’s demand for seeds should be a
strategic move made based on their knowledge of the game.

Therefore, in formulating our game, we adopt the fair allocation mecha-
nism in [13]. Next, to complete the game, we define utility functions u =
(u1, u2, . . . , un). In a nutshell, an agent’s utility consists of two parts: a gain
function gi(·) representing its expected profit from the campaign and a loss
function `i(·) representing its costs by participating.

We assume that each agent i sets a fixed price and thus fetches a fixed profit
pi from each adopted customer in the network. Therefore, we have

gi(ki, Si, S−i) = pi · [σi(Si, S−i)− |Si|]

=
piki∑
j kj

σ(Si ∪ S−i)− piki. (1)

Notice that the host is known a priori to run the greedy algorithm to select the
global seed set S, and thus the collective influence spread can be re-written as a
function of the total budget, instead of a set function. That is, given a budget
profile (k1, k2, . . . , kn), let σg(ki, k−i) be the expected total spread achieved by
a greedily chosen set with

∑
i ki elements. Similarly, σg

i (ki, k−i) is defined to
be ki∑

j kj
σg(ki, k−i). Hence, we can re-write agent i’s gain function (1) as a

function of the budget profile (ki, k−i):

gi(ki, k−i) = pi · [σg
i (ki, k−i)− ki] =

piki
K

σg(ki, k−i)− piki, (2)

where we have used K as the shorthand for
∑

j kj . It can be easily seen that
i’s profit depends on not only its own budget, but also all agents’.

Agent i’s loss function consists of two types of costs, both are charges by
the host as its business model. More specifically, the host charges α for each
seed requested and β for per one expected adopter. Both α and β are assumed
constant and the same for all agents. The per-seed charge α is easily justified,
since the host is providing services to agents. On the other hand, the per-
adopter charge β can be thought of as a surcharge preventing agents to abuse
the system (mechanism) by reporting arbitrarily high demand for seeds. Thus,
we can write the loss function as

`i(ki, k−i) = αki + β · [σg
i (ki, k−i)− ki] (3)

The utility of agent i is simply the different between its gain and loss, and
thus combining (2) and (3), we have:

ui(ki, k−i) = gi(ki, k−i)− `i(ki, k−i)
= (pi − β) · σg

i (ki, k−i)− (pi + α− β) · ki. (4)

We also assume that pi+α > β, which simply says that the product is reasonably
profitable, meaning pi is at least higher than β − α (which can be negative if
the host is not too greedy!).
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3.3 Nash Equilibria of the Game

As the competitive viral marketing game G is finite (both N and A are finite),
mixed-strategy Nash equilibria are guaranteed to exist [15]. However, in the
context of a marketing campaign, pure-strategy Nash equilibria are more inter-
esting as agents will need to submit deterministic budgets to the host.

There are many work in the game theory literature studying the existence
of pure-strategy Nash equilibria. In general, determining whether a game has
a pure-strategy Nash equilibrium is NP-hard [8]. One way to show that pure-
strategy Nash equilibria exist is to use fixed point theorems as sufficient con-
ditions, e.g., the Kakutani’s fixed point theorem [15]. However, this approach
does not apply here as the actions sets are finite, and hence not convex in our
case. Recently, Gottlob et al. [8] showed that if a game has “small neighbor-
hood” and its corresponding “dependency hypergraph” has bounded treewidth,
then finding pure Nash equilibria for this game is feasible in polynomial time.
Small neighborhood means that for each agent i, the number of i’s “neighbors”
(other agents whose actions will affect i’s utility) is logarithmic w.r.t. |N |. The
dependency hypergraph is a graph with agents as nodes, and its hyperedges are
drawn based on neighboring relationships of agents. Clearly, their result cannot
be used in our case, either, as the competitive viral marketing game does not
satisfy the small neighborhood condition – in fact, all agents affect each other’s
utility in the game.

In view of the above, we explore the existence of pure-strategy Nash equi-
libria by directly observing the structure and properties of the game. Here we
provide a sufficient condition for the existence of pure Nash equilibrium for the
case of |N | = 2. We can think of the strategic moves of the two agents as a
“line-sweeping” process where they increment their budgets by one at each step.
For example, initially, they start with k1 = k2 = 0. Then, they simultaneously
increment k1 and k2 by one at a time, until one agent sees its utility starting
to decrease, which we say the agent “hits” its “critical point”. In fact, the line-
sweeping process can start with any arbitrary small positive integers, and they
may lead to different critical points and hence a different equilibrium.

Definition 1 (Critical Point). Agent i is said to reach its critical point k∗i
in the line-sweeping process with an arbitrary but fixed start point if and only if

1. ui(k
∗
i , k−i) > ui(k

∗
i + 1, k−i) and ui(k

∗
i , k−i) > ui(k

∗
i − 1, k−i);

2. ui(k
∗
i , k−i) > ui(k

∗
i + 1, k−i + 1);

3. ui(k
∗
i , k−i) > ui(k

∗
i − 1, k−i − 1).

Without loss of generality, assume an arbitrary start point for line-sweeping,
and that agent 2 reaches critical point k∗2 first in the “line-sweeping” budget
incrementing process. From that point on, agent 1 can still possibly go on, so
we will proceed by case analysis.

Case 1. Suppose that agent 1 also reaches the critical point at the same
time. Then, by Definition 1, neither agent has profitable deviations from the
current budgets, and thus they are already in an equilibrium.
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Case 2. Suppose otherwise, that agent 1 has not reached its critical point
and hence will continue to increment k1. Consider the very next step of “line-
sweeping”, in which k1 has gone up to k1 + 1. The budget profile now becomes
(k1 + 1, k∗2). First, there is no need to consider the case in which agent 2 also
increments k∗2 by one, since this contradicts with Definition 1. Second, if agent
2 stays with k∗2 rather than decrementing to k∗2 − 1, we can let k1 keep going
up until either agent 1 also reaches critical point or agent 2 does want to go
down. Therefore, it suffices to consider the case where agent 2 has a profitable
deviation by going down to k∗2 − 1. This may happen when the cost saved is
more than the marginal profit brought to agent 2 by the newest seed of agent
1.

At this point (budget profile being (k1 + 1, k∗2 − 1)), we can show by contra-
diction that agent 1 cannot have a profitable deviation to (k1, k

∗
2−1), otherwise

it would not have gone from k1 to k1 + 1 in the first place (for simplicity and
space considerations, we omit the full proof for this claim here). Thus, the suf-
ficient condition for a pure-strategy Nash equilibrium is that agent 1 also does
not have a profitable deviation from (k1 + 1, k∗2 − 1) to (k1 + 2, k∗2 − 1), i.e.,
u1(k1 + 1, k∗2 − 1) ≥ u1(k1 + 2, k∗2 − 1), which implies that (k1 + 1, k∗2 − 1) is
an equilibrium. For this condition to hold, a simple calculation yields that the
marginal gain in global influence spread brought by the (k1 + k2 + 1)th seed in
the greedy algorithm, denoted by z, should satisfy:

z ≤ p1 + α− β
p1 − β

· k1 + k∗2 + 1

k1 + 2
− k∗2 − 1

(k1 + k∗2)(k1 + 2)
· σg(k1 + k∗2).

This condition is instance-dependent in the sense that it involves parameters
of a specific game instance, e.g., p1, α, β, and also the graph structure and
influence probabilities which determine influence spread values.

4 Conclusion and Discussions

In this work, we propose a game-theoretic approach to address the problem of
competitive viral marketing campaign design from the host’s perspective. In
particular, unlike previous work, in our framework competing companies are
able to make strategic choices on the budgets to report. We provide a sufficient
condition for the existence of pure-strategy Nash equilibria.

There are a couple of possible directions for future work: First, one can look
for a more general result on pure-strategy Nash equilibria, and fully characterize
them,especially for the game instances with more than two players. Second, it
is also interesting to investigate other mechanisms for allocating seeds.
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