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Abstract

A great deal of research has been recently focused on stochastic games. Stochastic games can generally
model the interactions between multiple agents in an environment. One of the major challenges in stochas-
tic games is the problem of learning a policy to play in such games. While lots of people have worked in
this area and proposed various algorithms for that, there is no unique method which can outperform all
other methods. Therefore, one should know the pros and cons of different algorithms in the literature to
select the one that suits his/her situation best. In this paper, we survey different methods proposed in the
literature, group them according to their approaches and discuss about the general advantages and disad-

vantages of each group.

1 Introduction

The promise of reinforcement learning (RL) is to program an agent in an environment by rewards and punishments
and without specifying how the agent should do the task. Even though it dates back to the days of cybernetics,
people in machine learning and artificial intelligence communities are really attracted in this area and use it in
different situations (Kaelbling et al., 1996). We can see lots of applications of RL in different fields. In optimiza-
tion, we can see the work by Crites and Barto (1996) who used RL to control a four-elevator, ten-floor system; Or
the works by Nie and Haykin (1995) and Zhang and Dietterich (1995) who applied it to dynamic channel alloca-
tion and resource constrained scheduling, respectively. In robotics, we can see OBELIX robot (Mahadevan and
Connell, 1992) which can push boxes and the autonomous blimp (Rottmann et al., 2007). We can also see other
applications of RL in other fields such as game playing, industrial manufacturing, combinatorial search problems,
operation research and lots of other areas.

The above applications are all examples of a stationary environment where there is only one agent acting in it.
However, in most real world problems, there are multiple agents acting in the environment. These agents can be
cooperating with each other, competing against each other, or both. Exploration and mapping (Simmons et al.,
2000) is an example of cooperating multi-agent system, in which, multiple agents are trying to find the map of an
unknown environment. Setting the price in a marketplace (Tesauro and Kephart, 2002) is an example of a compet-
itive environment. And, a robot soccer team (Balch, 1997) is an example of an environment with both cooperation
and competition, because the agents in one team are cooperating while they are competing agents agents in the
other team. We can formulate these examples as a stochastic game (Shapley, 1953), in which, agents perform an
action and they transition to a new state.

Stochastic games are an important subject of study in both theory and practice. As we can see in the above ex-
amples, learning to play in a stochastic game is of high importance. In environments of a stochastic game, we

cannot consider the other agents just as part of the environment and use simple RL methods. That’s because the



other agents may be learning and adapting their actions based on the actions performed by other agents available
in the environment. For example if a company sets its prices regardless of other companies, the other companies
may learn how this company is deciding on its prices and set their prices somehow to beat this company. We
can see from this example that an agent should explicitly take other agents into account while learning in such
environments.

In this paper, we survey the works on learning in stochastic games. We talk about different approaches and algo-
rithms in the literature, group them according to the approach they are using, and generally discuss the advantages
and disadvantages of each group.

The rest of the paper is organized as follows: Section 2 provides sufficient background for reader to read the rest of
the paper; Section 3 talks about the early works which considered playing in the equilibrium of the game; Section
4 is devoted to reinforcement learning approaches to learn in stochastic games; In section 5, criteria-based methods

are introduced; Finally, section 6 concludes the paper and points out some future directions.

2 Background

In this section, we provide the definitions of the terminologies which are used in the rest of the paper so that reader
can refer to it when required.

Normal form game (Shoham and Leyton-Brown, 2009): A (finite, n-person) normal form game is a tuple (N,
A, u) where N is a set of n players; A = A, Ao, ..., A, where A; is the actions available to player i; and u =
(u1,ua, ..., u, ) where u; is a real-valued utility function for player i.

Stochastic game (Shoham and Leyton-Brown, 2009): A stochastic game is a tuple (Q, N, A, P, R) where Q is a
finite set of games; N is finite set of n players; A = Ay, Ao, ..., A, where A; is the set of actions available to player
i; P is the transition probability function where P(q, a,q) is the probability of going from state ¢ to ¢ after profile
action a; and R = ry1,ra, ..., 7, Where 7; is a real-valued payoff function for player i.

Stationary strategy (Raghavan and Filar, 1991): A strategy where the player plays in a “memoryless” way, in
which, for each matrix game A?, the player selects a probability distribution on the rows (or columns) of A®, and
every time A® is reached the rows (or columns) are chosen according to that specific probability distribution.
Pure stationary strategy (Raghavan and Filar, 1991): A strategy where for each matrix game A°, the player
selects a particular row (or column) to be played whenever state s is reached.

Self-play (Shoham and Leyton-Brown, 2009): A situation where all the agents adopt the same strategy (such as
reinforcement learning). Note that this does not mean that all the agents always play the same action in each stage

game.

3 Playing in the equilibrium

Similar to other forms of games, playing in the equilibrium of the stochastic game is a possible strategy. Shapley
(1953) was the first who introduced stochastic games and the equilibria of such games. He considered a zero-sum
two-player stochastic game with finite number of states and finite number of pure strategies at each state. While
undiscounted stochastic games were proposed later on (Gillette, 1957), Shapley considered a discounted game
where the game could end by a positive probability at each step. He proposed the use of stationary strategies for
these games by arguing that pure and mixed strategies take into account irrelevant information and it would be
better to have a certain behavior strategy in which, no matter what route has been traversed, the same strategy is
played at each state. He proved the existence of optimal strategies and the existence of a solution in this settings
which means, no matter what the opponent does, player I can gain a certain amount of expected utility by following
an optimal stationary strategy.

Takahashi (1963) generalized Shapley’s results to the case of infinite states and infinite number of pure strategies at



Fictitious Play Algorithm
Initialize V(s) arbitrarily, U; (s, a;) = 0 and C;(s,a;) =0
Repeat the following steps:

U, (s.a;
a = (a1, as) where a; = argmaxai%

Ci(s,a;) = Ci(s,a;) + 1
Ui(s,a;) = Ui(s,ai) + Ri(s,a) + v (3_, T(s,a,s")V(s'))

V(s) = maz,, gig‘:g%

Table 1: The algorithm for fictitious play

each state. There were also other works trying to improve Shapley’s results. We can consider Shapley’s algorithm
as an extension of value iteration algorithm (Bertsekas, 1987) for MDPs to stochastic games which iterates through
value space. The work by Hoffman and Karp (1966) is an example attempt to improve Shapley’s algorithm where
they iterate through both value and strategy state. Another well-known work is done by Pollatschek and Avi-Itzhak
(1969) where they try to extend the policy iteration algorithm (Howard, 1960) for MDPs to stochastic games. There
has been also attempts to calculate the equilibrium for a broader range of games. Among these, we can mention
the work by Fink (1964) who proposed a way of calculating the equilibrium for general-sum n-player stochastic
games.

Even though various algorithms have been proposed to solve such stochastic games, it has been shown that they
lack an algebraic property called "ordered field property” which makes them really difficult to be solved efficiently
(Parthasarathy and Raghavan, 1981). Various efforts has been made in the literature to find the classes of stochastic
games for which ordered field property holds. Among these classes, we can name stochastic games with perfect
information (Gillette, 1957) in which the action space of one of the players in every state is singleton; Single-
controller stochastic games (Stern, 1975) in which the new state is just a function of the previous state and the action
played by one of the players; And switching-controller stochastic games (Filar, 1981) which is a generalization of
single-controller stochastic games in which the new state is a function of the previous state and player 1’s action

for some states and a function of the previous state and player 2’s action for the rest.

3.1 Fictitious Play

Now we talk about about a famous algorithm for finding and playing in the Nash equilibrium of the game called
fictitious play (Robinson, 1951; Vrieze, 1987). Fictitious play can find the equilibrium in zero-sum games and
some of general-sum games and its extension called smooth fictitious play (Fudenberg and Levine, 1999) can play
mixed equilibrium. The algorithm maintains the count and the utility for each action and when it want to choose
an action in a given state, it deterministically computes the average expected discounted reward from the past
experience and chooses the one that has done best in the past. We can see the algorithm of fictitious play for a

two-player zero-sum game in Table 1.

3.2 General Problems

Playing in a Nash equilibrium of the stochastic game may seem to be a good choice of strategy. However, not
only its computation is NP-complete for pure stationary strategies and NP-hard for stationary strategies (Ummels
and Dominik, 2009), but also it is not a good choice in cases when there are multiple equilibria and we don’t
know in what equilibrium the opponents are planning to play; as well as when the opponents are not playing in

an equilibrium. Consider the case when two players are playing the game of matching pennies infinite times and



Joint-Action Learner Algorithm

Initialize Q(s, a) and V(s) arbitrarily and C(s, a) =0, n(s) =0

Repeat the following steps:

Play argmaza, 3, C(Z’(‘;)‘i) (s, {ai,a_;))

Observe next state s’, reward r and opponent’s action a_;.

Q(s,a) = (1 —a)Q(s,a) + a(r + vV (s’)) where a = {a;, a—;) and V(s) is the max possible value in s.
C(s,a_;) =C(s,a-;) +1

n(s) =n(s)+1

Table 2: The algorithm for joint-action learner

suppose the first player is always playing heads. In this case, it is not a good choice for the second player to play
in the equilibrium of the game (which randomizes between heads and tails with equal probability). Instead, he has

to learn what the other player is doing and then adapt his strategy accordingly to maximizes his payoff.

4 Reinforcement Learning

Markov decision process (MDP) is a useful mathematical framework for decision making under uncertainty. They
are actually the single agent version of a stochastic game (Bowling and Veloso, 2000). Reinforcement learning
(Sutton and Barto, 1998) is a successful way of finding the optimal policy in MDP framework. There have been
also attempts to use reinforcement learning as a basis for learning in stochastic games. Even though there are single
agent learning algorithms which can be used for stochastic games (Jaakkola et al, 1994; Baird and Moore, 1999),
they usually fail to converge to a policy in stochastic games and we don’t talk about them in this paper. Instead,
we talk about the works that have directly taken into account the stochastic games and proposed reinforcement

learning algorithms to learn in these games.

4.1 Joint-Action Learners

Early attempts were trying to model the opponent. They assumed the opponent is playing according to a stationary
distribution over his actions and learned an explicit model of it. At the same time, using temporal difference
(Sutton and Barto, 1990), joint-action values were learned and both these were used to select an action to play.
This has been done in a fully collaborative domain by Claus and Boutilier (1998) where they call it joint-action
learner (JAL) and in a fully competitive domain by Uther and Veloso (1997). The general algorithm for it can be
seen in Table 2 (C(s, a) counts the number of times that action ”a” has been played in state ’s” by the opponent
and n(s) counts the total number of times that state ”’s”” has been met). While the policy learned by this algorithm is
optimal when other agents are following a stationary policy, the major problem with this algorithm is that it cannot

converge to mixed equilibria even in self-play which means that it is not convergent.

4.2 minmax(Q and NashQ

Another reinforcement learning approach to learn in stochastic games is minmaxQ (Littman, 1994). MinmaxQ is
an extension of the traditional Q-Learning to zero-sum stochastic games. It extends the Q-values to maintain the
joint action, uses linear programming to update V-values and find the policy, and it uses a decreasing learning rate.
The algorithm for minmaxQ is in Table 3. While minmaxQ was proposed for zero-sum stochastic games, Hu and

Wellman (1998) extended this algorithm to general-sum stochastic games. They called their algorithm NashQ in



MinmaxQ Algorithm

Initialize Q(s,a) = 1,V(s) = LII(s,a;) = pgq, 0 = 1

Repeat the following steps:

Play action q; in state s

Observe new state s’ reward r and opponent’s action a_;

Q(s,a) = (1 — a) * Q(s,a) + a(r + vV (s')) where a = (a;,a_;)

Use linear programming to find I1(s, a;) = argmay (5,q,)ming._, Za; (s, ab) * Q(s,al,a_;)
V(s) = min,_, Za; II(s,al) * Q(s,al,a_;)

Decay «

Table 3: The algorithm for minmaxQ

which, they assume each player can observe the immediate rewards and previous action of the other player. Then
each agent, not only keeps his own Q values (like minmaxQ) but also maintains the opponent’s Q-values. While
minmaxQ uses a linear programming to find the solution, NashQ uses quadratic programming.

This algorithm is the first algorithm based on reinforcement learning which is addressing the problem of learning
in general-sum stochastic games. Like other rudimentary algorithms for different problems, they make some
restrictive assumptions such as limiting the structure of intermediate matrix games, restricting the game to have
just one equilibrium, considering that every state and action have been infinitely visited, etc. which decreases its
applicability to various problems.

These two algorithms have the nice property of convergence. However, their problem is that they will not choose

the optimal policy when the opponent is not playing in the equilibrium of the game.

5 Criteria based methods

One of the problems with learning algorithms in stochastic games is that there are not predefined criteria so that
people try to address them in the algorithms they propose. We can see some works in the literature which they
defined some criteria of their own and they tried to propose an algorithm which works best according to those
criteria. In this section. we will see some of these works and will discuss about the criteria they considered and the

algorithms they proposed.

5.1 Rationality and Convergence

Bowling and Veloso (2001) were among the first who defined some criteria for effective learning. They defined
rationality and convergence as follows:

“Rationality: If the other players’ policies converge to stationary policies then the learning algorithm will converge
to a policy that is a best-response to their policies”

”Convergence: The learner will necessarily converge to a stationary policy”

They considered the above definition of convergence in the self-play and claimed that none of the algorithms pro-
posed up to that time satisfied both criteria. We can see this claim in the algorithms we discussed in previous
sections. For example, we can see that minmaxQ is convergent but not rational and JAL is rational but not conver-
gent. They proposed WoLF (Win or Learn Fast) policy hill climbing algorithm in their paper which could address
both these problems.

First of all, they introduce policy hill climbing which is an extension of Q-learning to play mixed strategies. This

algorithm, maintains Q values and current policy. Then it improves the policy by performing hill climbing in the



space of mixed strategies. Like Q-learning this is a rational but not convergent learning method. Then, they pro-
pose WoLF policy hill climbing based on this algorithm. The idea behind the new algorithm is to use a variable
learning rate which can have a high or a low value. The high value is used when the player is losing and low value
is used when the player is winning.

Since the only difference between this algorithm and the simple policy hill climbing is the learning rate, this algo-
rithm is also rational. The authors also prove in another paper (Bowling and Veloso, 2001) that using WoLF, the
algorithm is guaranteed to converge to a Nash equilibrium is self-play. This means that their algorithm satisfies
both criteria they proposed. They also represented this result empirically for some of the benchmark games such
as soccer and grid-world.

One of the major problems with WoLF is that it is only applicable to two-player games. Even though this problem
was addressed by Conitzer and Sandholm (2003) later on, there are some problems with this algorithm. The first
problem is that it only considers the convergence in self-play, while in reality there may be both self-play and
stationary opponents. The second problem is that they require to converge to a Nash equilibrium while in some
games like the Prisoner’s Dilemma, players may not be willing to play in the equilibrium of the game but they

would rather cooperating as much as the other player is not defecting.

5.2 Scalability

Bowling and Veloso (2002) realized that lots of the works in the literature have been applied only to small games
with at most hundreds of states. Even though there were some algorithms proposed for some specific large games
such as Checkers (Samuel, 1967) and TD-Gammon (Tesauro, 1995), they could only be applied to these games
and they could only play a deterministic policy. Therefore, Bowling and Veloso (2002) decided to scale some of
the methods based on Nash equilibrium to games with intractable state spaces. Based on their arguments in their
paper, we can define the scalability criteria as the ability of an algorithm to be applied to intractable state spaces.
They used the idea of generalization and approximation and combined three different methods to propose one
algorithm. First of all, they used tile coding (Sutton and Barto, 1998) which given a set of continuous features,
creates a set of boolean features. In order to keep the number of parameters manageable, they hashed each of the
tiles to a fixed size table. Then they used a policy gradient technique (Sutton et al., 2000) with a variable learning
rate based on WoLF (Bowling and Veloso, 2001) to learn a policy for each of the states in the hash table. Policy
gradient technique makes the algorithm not to be deterministic and using WoLF makes it convergent. They applied
their method to the two-player n-card version of Goosfiel game invented by Flood (1985) which has more that 10!*
states and needs approximately 2.5TB of storage to store Q values and the policy if we use simple Q-learning.
Even though they claim based on their results that this method can be applied to large games, using hash tables
puts doubt on its efficiency. They use a hash table of size 106 which means that, on average, 10° states are mapped
to one cell of the hash table. We know that hash functions do not necessarily map similar states to a particular cell

in the table and this means that their algorithm is learning one policy for 10> potentially different states.

5.3 Other Criteria

There have been lots of other works in the literature which have defined some new criteria and proposed algorithms
to address them. Fudenberg and Levine (1995) introduced the following criteria:

”Safety: The learning rule must guarantee at least the minimax payoff of the game.”

”Consistency: The learning rule must guarantee that it does at least as well as the best response (in the stage game)
to the empirical distribution of play when playing against an opponent whose play is governed by independent
draws from any fixed distribution.”

Since neither these criteria nor the criteria considered by Bowling and Veloso (2001) or others in the literature con-



sidered future play of the opponent, new criteria called targeted optimality, auto-compatibility and a new definition
of safety were proposed by Powers and Shoham (2005) to address this problem. Furthermore, In order to develope
algorithms that can strongly guarantee payoffs against a variety of opponents and also cooperate with one another,
two new criteria called targeted group optimality and a new definition of safety were proposed by Vu et al. (2006).
Even though these are really interesting criteria and there have been interesting algorithms proposed for them, to

keep things simple, we don’t talk about these criteria and algorithms in this paper.

6 Conclusion

Stochastic games have been an interesting subject of study from the time they have been introduced until now.
Lots of people have tried to propose algorithms to learn how to play in such games. There have been both game
theory and reinforcement learning approaches to learn to play in this games. In this paper we examined some of
the works in the literature and discussed generally about their advantages and disadvantages.

Recent works are trying to propose some criteria for effective learning in stochastic games and then try to propose
an algorithm which addresses these criteria. However, we can see that people often argue that there are problems
with the criteria considered by other papers when they want to propose new ones. In future, it would be better if
people, first of all, try to just propose suitable criteria without proposing any algorithm for that. Once all people
agreed on a common set of criteria, then thay can try to propose algorithms that address all of at least of those
criteria.

One of the other major challenges in learning in stochastic games is how to evaluate the model. While there are
some benchmarks for small games, they are not useful if we want to compare the efficiency of two algorithms.
People often have two learning algorithms learn against each other and examine the reward over time. However,
this cannot be used for methods which learn in self-play. Furthermore, there is no benchmark and a unique way of
evaluation for large games. For example, we can see that Bowling and Veloso (2002) use a non-benchmark game
to test their proposed algorithm and train a challenger against their agent to find the worst-case performance of
their policy. However, having a good worst-case does not necessarily mean that the algorithm can play a game
optimally. A future direction would be trying to come up with a unique and efficient way of testing and evaluating

such algorithms so that one can easily compare his method to others.
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