Complexity of Nash Equilibrium

David R.M. Thompson
(+ slides by Constantinos Daskalakis)

January 17, 2013

Outline

(1) Complexity Recap

(2) Nash
(3) Reduction from Nash
(4) Reduction to Nash

Complexity of Nash Equilibrium

Complexity Recap

Definition (P)

The set of decision problems that can be solved in polynomial time by a deterministic Turing machine.
e.g., is this list sorted?

Definition (NP)

The set of decision problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., is this boolean formula satisfiable?

Complexity Recap

Definition (Reduction)

Transforming one problem into another (using a deterministic Turing machine).
$A \leq_{P} B$ means "Problem A can be solved using an algorithm for problem B, with polynomial additional cost."

- $A \leq_{P} B$ and $B \in N P$ implies $A \in N P$.

Complexity Recap

Definition (X-hard)

A problem is X-hard iff it is at least as hard as any problem in X.

- $A \leq_{P} B$ and A is NP-hard implies B is NP-hard.

Definition (X-complete)

A problem is X-complete iff it is in X and X-hard.

- $A \leq_{P} B, B \leq_{P} A$ and A is NP-complete implies B is NP-complete.

Where does Nash fit in?

- As a decision problem, it's easy:

Does this game have a Nash equilibrium? Yes!

Where does Nash fit in?

- As a decision problem, it's easy:

Does this game have a Nash equilibrium? Yes!

- Ask slightly more and it becomes NP-complete, e.g.,
- Does this game have more than one Nash equilibrium?
- Does this game have a Nash equilibrium equilibrium where action a_{i} is played with non-zero probability?
- Does this game have a Nash equilibrium equilibrium where action a_{i} is played with zero probability?
- But what's the complexity of finding a Nash equilibrium?

Outline

(1) Complexity Recap

(2) Nash
(3) Reduction from Nash

4 Reduction to Nash

Complexity of Nash Equilibrium

Where does Nash fit in?

- What's the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine.
e.g., find a satisfying assignment for this boolean formula.

- ϵ-NASH \in FNP.

Where does Nash fit in?

- What's the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine.
e.g., find a satisfying assignment for this boolean formula.

- ϵ-NASH \in FNP.
- What's that ϵ mean?

Where does Nash fit in?

- What's the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine.
e.g., find a satisfying assignment for this boolean formula.

- ϵ-NASH \in FNP.
- What's that ϵ mean?
- Where did the ϵ come from? Games with more than two players might not any rational-valued Nash equilibrium.

Where does Nash fit in?

Definition (PPAD)

The set of function problems where a solution is guaranteed to exist, by a parity argument on a directed graph.

- PPAD \subseteq FNP.

Theorem (Daskalakis et al, Chen \& Deng)

ϵ-Nash is PPAD-complete.

Where does Nash fit in?

Definition (PPAD)

The set of function problems where a solution is guaranteed to exist, by a parity argument on a directed graph.

- PPAD \subseteq FNP.

Theorem (Daskalakis et al, Chen \& Deng)

ϵ-Nash is PPAD-complete.

- Agenda:
- Show ϵ-NASH \leq_{P} BROUWER (PPAD-complete) i.e., ϵ-NASH \in PPAD
- Show BROUWER $\leq_{P} \epsilon$-NASH i.e., ϵ-NASH is PPAD-hard.

Outline

(1) Complexity Recap

(2) Nash
(3) Reduction from Nash

4 Reduction to Nash

Nash's Theorem " \Rightarrow " NASH \in PAD

Nash

Brouwer

$f:[0,1]^{2} \rightarrow[0,1]^{2}$, cont.
such that
fixed point \equiv Nash eq.

Penalty Shot Game

Nash's Theorem " \Rightarrow " NASH \in PPAD

Nash

Brouwer

Kick Dive	Left	Right
Left	$1,-1$	$-1,1$
Right	$-1,1$	$1,-1$

Nash's Theorem " \Rightarrow " NASH \in PPAD

Nash $\quad \longrightarrow \quad$ Brouwer

Nash's Theorem " \Rightarrow " NASH \in PPAD

Nash $\quad \longrightarrow \quad$ Brouwer

Outline

(4) Reduction to Nash

Complexity of Nash Equilibrium

PPAD-Hardness of NASH [DGP '05]

Nash

Brouwer

- Game-gadgets: games acting as arithmetic gates

Games that do real arithmetic

e.g. multiplication game (similarly addition, subtraction)
two strategies per player, say $\{0,1\}$;
\longrightarrow Mixed strategy \equiv a number in $[0,1]$
(probability of playing 1)

Games that do real arithmetic

PPAD-Hardness of NASH [DGP ’05]

Nash

- use game-gadgets to simulate f with a game
- Topology: noise reduction

Reduction to 3 players [Das, Pap '05]

Reduction to 3 players [Das, Pap ‘05]

Coloring: no two nodes affecting one another, or affecting the same third player use the same color;
"represents" red players
"represents" blue players

"represents" all green players

Payoffs of the Green Lawyer

payoffs of the green lawyer for representing node u
wishful thinking: The Nash equilibrium of the lawyer-game, gives a Nash equilibrium of the original multiplayer game, after marginalizing with respect to individual nodes.

But why would a lawyer represent every node equally?

Enforcing Fairness

PPAD-hardness of NASH

Reducing to 2 players [Chen, Deng '05]

Coloring: no two nodes affecting one another, or affecting the same third playor use the same color;
two colors suffice to color the multiplayer game in the [DGP 05] construction

- the expected payoff of each lawyer is additive w.r.t. the nodes that another lawyer represents;
- hence, if two nodes affect the same third node, they don't need to have different colors.

