イロト イポト イヨト イヨト

Complexity of Nash Equilibrium

David R.M. Thompson (+ slides by Constantinos Daskalakis)

January 17, 2013

Complexity of Nash Equilibrium

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Outline			

2 Nash

- 3 Reduction from Nash
- 4 Reduction to Nash

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 − のへの

Complexity of Nash Equilibrium

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash

Definition (P)

The set of decision problems that can be solved in polynomial time by a deterministic Turing machine.

e.g., is this list sorted?

Definition (NP)

The set of decision problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., is this boolean formula satisfiable?

個 と くき とくきょ

Definition (Reduction)

Transforming one problem into another (using a deterministic Turing machine).

 $A\leq_P B$ means "Problem A can be solved using an algorithm for problem B, with polynomial additional cost."

(本間) (本語) (本語) (

• $A \leq_P B$ and $B \in NP$ implies $A \in NP$.

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Complexity Recap			

Definition (X-hard)

A problem is X-hard iff it is at least as hard as any problem in X.

• $A \leq_P B$ and A is NP-hard implies B is NP-hard.

Definition (X-complete)

A problem is X-complete iff it is in X and X-hard.

• $A \leq_P B$, $B \leq_P A$ and A is NP-complete implies B is NP-complete.

<ロ> (四) (四) (三) (三) (三)

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Where does Nash	fit in?		

• As a decision problem, it's easy:

Does this game have a Nash equilibrium? Yes!

Where does Nash fit in?

• As a decision problem, it's easy:

Does this game have a Nash equilibrium? Yes!

• Ask slightly more and it becomes NP-complete, e.g.,

- Does this game have more than one Nash equilibrium?
- Does this game have a Nash equilibrium equilibrium where action a_i is played with non-zero probability?
- Does this game have a Nash equilibrium equilibrium where action a_i is played with zero probability?

個 と くき とくきと

• But what's the complexity of finding a Nash equilibrium?

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Outline			

- 3 Reduction from Nash
- 4 Reduction to Nash

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complexity of Nash Equilibrium

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Where does Na	ash fit in?		

• What's the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., find a satisfying assignment for this boolean formula.

• ϵ -NASH \in FNP.

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Where does Na	ash fit in?		

• What's the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., find a satisfying assignment for this boolean formula.

- ϵ -NASH \in FNP.
- What's that ϵ mean?

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Where does N	ash fit in?		

• What's the complexity of finding a Nash equilibrium?

Definition (FNP)

The set of function problems that can be solved in polynomial time by a non-deterministic Turing machine. e.g., find a satisfying assignment for this boolean formula.

- ϵ -NASH \in FNP.
- What's that ϵ mean?
- Where did the ϵ come from? Games with more than two players might not any rational-valued Nash equilibrium.

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Where does Na	ash fit in?		

Definition (PPAD)

The set of function problems where a solution is guaranteed to exist, by a parity argument on a directed graph.

/₽ ► < E ►

• PPAD \subseteq FNP.

Theorem (Daskalakis et al, Chen & Deng)

ϵ-Nash is PPAD-complete.

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Where does Na	ash fit in?		

Definition (PPAD)

The set of function problems where a solution is guaranteed to exist, by a parity argument on a directed graph.

• PPAD \subseteq FNP.

Theorem (Daskalakis et al, Chen & Deng)

ϵ-Nash is PPAD-complete.

- Agenda:
 - Show *ϵ*-NASH ≤_P BROUWER (PPAD-complete)
 i.e., *ϵ*-NASH ∈ PPAD

Show BROUWER ≤_P ε-NASH
 i.e., ε-NASH is PPAD-hard.

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Outline			

4 Reduction to Nash

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ � � � � �

Complexity of Nash Equilibrium

Penalty Shot Game

Penalty Shot Game

Penalty Shot Game

fixed point

 ϵ - fixed point

Complexity Recap	Nash	Reduction from Nash	Reduction to Nash
Outline			

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Complexity of Nash Equilibrium

PPAD-Hardness of NASH [DGP '05]

game whose Nash equilibria are close to the fixed points of *f*

 $f: [0,1]^3 \rightarrow [0,1]^3$, continuous & p.w.linear

- Game-gadgets: games acting as arithmetic gates

Games that do real arithmetic

e.g. multiplication game (similarly addition, subtraction)

two strategies per player, say {0,1};

Mixed strategy = a number in [0,1](probability of playing 1)

PPAD-Hardness of NASH [DGP '05]

wishful thinking: The Nash equilibrium of the lawyer-game, gives a Nash equilibrium of the original multiplayer game, after marginalizing with respect to individual nodes.

But why would a lawyer represent every node equally?

Enforcing Fairness

$$v_{2}: 0 \quad v_{2}: 1 \neq v_{2}$$

$$v_{1}: 0$$

$$copy of the payoff$$

$$v_{1}: 1$$

$$v_{1}: 1$$

$$v_{1}: 0$$

$$v_{2}: 0 \neq v_{2}$$

$$v_{2}: 1 \neq v_{2}$$

$$v_{1}: 0$$

$$v_{2}: 1 \neq v_{2}$$

$$v_{1}: 0$$

$$v_{2}: 1 \neq v_{2}$$

lawyers play on the side a high-stakes game over the nodes they represent

PPAD-hardness of NASH

Reducing to 2 players [Chen, Deng '05]

multiplayer game

Based on the following simple, but crucial observation:

- the expected payoff of each lawyer is additive w.r.t. the nodes that another lawyer represents;

- hence, if two nodes affect the same third node, they don't need to have different colors.

Coloring: no two nodes affecting one another, or affecting the same third player use the same color;

two colors suffice to colorthe multiplayer game inthe [DGP 05] construction

2 lawyers are enough