
Fighting m-criminals

with Bayesian Stackelberg games

Nimalan Mahendran

April 22, 2009

Abstract

Bayesian Stackelberg games have been used to compute optimal patrol
strategies for the security of the Los Angeles International Airport (LAX)
by modelling the security situation as a 1-leader, 1-follower, Bayesian
game where there is one leader type and an arbitrary number of follower
types. A previous approach, named DOBSS, computes the Stackelberg
solution for this game by solving a Mixed Integer Linear Program (MILP).
This paper shows that the action-graph game representation would be
helpful in speeding up the MILP algorithm and also make it possible to
scale the MILP approach to n-followers, each with an arbitrary number
of follower types, as long as the followers are unable to affect each other
by their actions.

1 DOBSS and LAX

Game-theoretic analysis is particularly well-suited to security domains, given
the self-interested and strategic nature of crime and crime fighting. The ad-
versarial scenario can be modelled as a game and then useful questions can be
answered by computing the appropriate solution concept. However, there are
many adversarial scenarios where computing the appropriate solution concept
is intractable. The nature of the solution concept and the lack of structure in
the adversarial scenario are factors that contribute to the intractibility.

[PPM+08a] describe an adversarial scenario where a single crime fighter must
guard against the threat of criminals by patrolling areas under its protection.
The crime fighter’s patrolling capabilities are limited, so it must choose a limited
subset of areas to patrol, based on the utility it places on protecting certain
areas. The criminals base their choice of targets on the patrol strategy that
they perceive the crime fighter to be following and on the utlity offered to them
by engaging in crime in certain areas.

[PPM+08a] propose a model for the patrol scenario as a Bayesian game with
one crime fighter and one criminal, where the crime fighter has only one type,
but the criminal could have an arbitrary number of types. An action for the
crime fighter in this Bayesian game is to select an area to patrol. An action

1

for the criminal in this Bayesian game is to select an area to strike. These
actions can be randomized over to generate mixed strategies. These mixed
strategies are interpreted as patrol and strike policies, where the probability
that an action is played in a mixed strategy is exactly the proportion of times
that the corresponding area will be patrolled or struck in a patrol or strike policy
[PPM+08a].

The criminal is able to observe the patrol policy of the crime fighter and
strike with knowledge of this patrol policy. Hence, the crime fighter takes on
a leader role and the criminal takes on a follower role. The moves in the Nash
equilibrium solution of a Bayesian game are simultaneous, but the moves in this
leader-follower scenario are not. The leader-follower scenario can be modelled by
the Stackelberg solution [SC73], where the follower selects its optimal strategy
after exactly observing the leader’s strategy.

There are certain conditions that must hold in the Stackelberg solution
[CS06]. The leader must commit to its strategy and cannot change it in light
of the follower’s strategy choice. The possession of this ability by the leader to
commit to a strategy must also be common knowledge.

[PPM+08a] present a method for computing the Stackelberg solution of the
crime fighting scenario by expressing it as a Mixed-Integer Linear Program
(MILP), an NP-hard optimization problem with algorithms that work well in
practice. This method is called the Decomposed Optimal Bayesian Stackelberg
Solver (DOBSS). DOBSS was then applied to the ARMOR system that is used
for security scheduling at the Los Angeles International Airport.

The Stackelberg solution is presented in Section 2. An explanation of why
it is must easier to find a Stackelberg solution to the 1-leader, 1-follower, n-
follower-type game than it is to find a Nash equilibrium is given in Section 3.
A compact and computationally efficient game representation known as action-
graph games and its algorithm for computing expected utility is surveyed in
Section 4. The motivation behind using action-graph games in this paper is to
be able to exploit structure in the crime fighter’s and the criminal’s payoffs to
speed up DOBSS and to extend the solution beyond the 1-criminal case. An
very high-level overview of branch-and-cut MILP solving algorithms is given in
Section 5 to illustrate the importance of computing expected utility efficiently.
Section 6 proposes a method of using action-graph games to exploit structure
in the payoffs to enable solutions of the m-criminal case, where the criminals
cannot influence each other through their actions.

2 The Stackelberg solution

The Stackelberg solution to a game is one where one of the players assumes the
role of the leader and all other players assume the role of the follower. The leader
commits to a strategy and then the followers play the game with knowledge of
the leader’s strategy. The leader’s position might seem like a disadvantaged one,
but in fact it is shown in [SC73] that the leader will do no worse by playing a
Stackelberg strategy than it would by playing according to the corresponding

2

Nash equilibrium.
The intuition behind the proof of this claim is that the leader is able to use

its commitment to a strategy as a means of selecting the the best response of the
follower that is the most agreeable to the leader. A Nash equilibrium is simply
a choice made in the same manner, expect that the additional constraint that
the leader’s strategy choice be a best response to the follower’s best response,
is also imposed.

The following game,
c d

a 2, 1 4, 0
b 1, 0 3, 2

, taken from [PPM+08a], illustrates

the Stackelberg solution and the advantage of being a leader. The row player
is the leader and the column player is the follower. It can be verified that
the only Nash equilibrium is (a, c), by iterated removal of strictly dominated
strategies. This Nash equilibrium results in a payoff of 2 for the leader. If the
leader commits to playing the pure strategy b, its payoff will be 3, because the
follower will maximize its utility by playing d. If the leader commits to playing
the mixed strategy [a : 0.5, b : 0.5], its payoff will be 3.5, because the follower’s
best response is to play d [PPM+08a].

Stackelberg games are solved by computing the best strategy for the leader
to commit to.

3 The relative ease of computing
the Stackelberg solution

The task for the follower, given the leader’s strategy choice, is a single-agent
linear programming problem. Therefore, although the leader’s utilities are ex-
pressed as ul(sl, sf), the dependence of ul on sf is unnecessary, as sf is deter-
mined by sl. The leader’s task is to find the optimal strategy sl, where the
expected utility under sl is ul(sl) and the evaluation of ul(sl) involves the so-
lution of the single-agent linear programming problem for the corresponding
follower strategy sf [PPM+08a].

The single-agent nature of the choice of sf , given sl, is the main reason that
solving for the leader’s optimal Stackelberg strategy is much easier than solving
for a Nash equilibrium.

3.1 Non-Bayesian Games

It is much easier to understand the difference in tractibility in computing the
Stackelberg solution as opposed to the Nash equilibrium if the analysis is re-
stricted to 2-person non-Bayesian games.

The Nash equilibrium for 2-person non-Bayesian games can be expressed as
a Linear Complementarity Problem (LCP) and solved by the Lemke-Howson
algorithm [SLB09]. The LCP, a feasibility program with no objective function,

3

is given by∑
k∈Al

ul(a
j
l , a

k
f)skf + rjl = U∗l , ∀j ∈ Al∑

j∈Al

uf (ajl , a
k
f)sjl + rkf = U∗f , ∀k ∈ Af∑

j∈Al

sjl = 1,
∑
k∈Af

skf = 1

sjl ≥ 0, skf ≥ 0, ∀j ∈ Al,∀k ∈ Af
rjl ≥ 0, rkf ≥ 0, ∀j ∈ Al,∀k ∈ Af

rjl s
j
l = 0, rkfs

k
f = 0, ∀j ∈ Al,∀k ∈ Af (LCP.1)

where Equation LCP.1, known as the complementarity conditons, are the only
non-linear terms [SLB09]. The presence of the complementarity conditions
makes solving the LCP much harder than solving a linear program [SLB09].

3.1.1 The MILP Approach of DOBSS

The non-Bayesian Stackelberg game with 1 leader and 1 follower is solved in
[PPM+08a] by solving the following Mixed-Integer Quadratic Program (MIQP)

maxsf ,sl,u∗f

∑
j∈Al

∑
k∈Af

ul(a
j
l , a

k
f)sl(a

j
l)sf (akf)

subject to
∑
j∈Al

sl(a
j
l) = 1,

∑
k∈Af

sf (akf) = 1

0 ≤ u∗f − EUf (sl, akf) ∀k ∈ Af (MIQP-1.1)

u∗f − EUf (sl, akf) ≤ (1− sf (akf))M ∀k ∈ Af (MIQP-1.2)

sl(a
j
l) ≥ 0 ∀j ∈ Al

sf (akf) ∈ {0, 1} ∀k ∈ Af (MIQP-1.3)

u∗f ∈ R

where EUf (sl, akf) =
∑
j∈Al

sl(a
j
l)uf (ajl , a

k
f) is the expected utility gained by

the follower playing the pure strategy akf and M is a large constant. u∗f repre-
sents the utility of the follower’s best pure strategy response to sl, where the
optimality of u∗f is enforced by constraint MIQP-1.1.

DOBSS simplifies the solution of the non-Bayesian Stackelberg game by
searching only for pure strategy best responses for the follower, as indicated by
constraint MIQP-1.3. This is a valid restriction because all pure strategies that
are in the support of a mixed strategy best response for the follower will have
the same expected utility as the mixed strategy itself and the leader is unable,
by its commitment to the leader strategy sl, to exploit the fact that the follower
is playing a pure strategy in a Stackelberg solution.

4

The MIQP was derived in [PPM+08a] by analyzing the optimality condi-
tions of the single-agent linear programming problem faced by the follower,
given the leader’s strategy. Complementary slackness conditions are important
optimality conditions that state that any action in the support of the follower’s
strategy must be a best response pure strategy to the leader’s strategy. These
complementary slackness conditions, like the complementarity conditions from
the LCP, would make the solution of the resulting Stackelberg game intractable.
The restriction to only consider pure strategy best responses allows the comple-
mentary slackness conditions to be simplified into constraint MIQP-1.2, turning
the problem into a MIQP. Constraint MIQP-1.2 is inactive when sf (akf) = 1
and forces the equality

u∗f − EUf (sl, akf) = 0

when sf (akf) = 0, and hence is equivalent to the complementary slackness con-
ditions when sf (akf) ∈ {0, 1}.

The MIQP can be expressed as a Mixed-Integer Linear Program (MILP) by
replacing the quadratic objective function with a linear one through a change
of variables [PPM+08a]. The resulting MILP can then be solved by general-
purpose MILP solvers, although the MIQP will continue to be the basis of
discussion in this paper, to ease the notation.

The MIQP is a tractable solution for a single follower type, but the Bayesian
Stackelberg game used to model the security scenario in [PPM+08a] must handle
an arbitrary number of follower types.

3.2 Bayesian Games with one leader type and n follower
types

[PPM+08a] show that the Bayesian Stackelberg game with n follower types de-
composes into a convex combination of n Bayesian Stackelberg games with 1
follower type for each game by proving that the objective function and con-
straints in both cases are equivalent. Hence, the MIQP for solving the Bayesian

5

Stackelberg game with n follower types T = {t1, . . . , tn} is given by

maxsf ,sl,u∗f

∑
t∈T

pt
∑
j∈Al

∑
k∈Af

ul(a
j
l , a

k
f)sl(a

j
l)s

t
f (akf)

subject to
∑
j∈Al

sl(a
j
l) = 1

∑
k∈Af

stf (akf) = 1 ∀t ∈ T

0 ≤ u∗f − EU tf (sl, akf) ∀k ∈ Af ,∀t ∈ T
ut
∗
f − EU tf (sl, akf) ≤ (1− stf (akf))M ∀k ∈ Af ,∀t ∈ T

sl(a
j
l) ≥ 0 ∀j ∈ Al

stf (akf) ∈ {0, 1} ∀k ∈ Af ,∀t ∈ T
ut
∗
f ∈ R ∀t ∈ T

where the quantities involving the follower f must now also be indexed by the
follower’s type t, where pt is the probability that the follower will be of type t.

The MIQP for solving the Bayesian Stackelberg game with n follower types
can be converted into a MILP by the same change of variables formula and
solved by general-purposes MILP solvers.

[PPM+08a] have shown that DOBSS outperforms other methods for solv-
ing Bayesian Stackelberg games with 1 leader, 1 follower and n follower types.
DOBSS and algorithms for computing Nash equilibria, such as the Govindan-
Wilson method and the simplicial subdivision method, have a common bottle-
neck: the computation of expected utility for an agent playing an action, given
the mixed strategies of all other agents.

4 Action-graph games and
the expected utility problem

Action-graph games (AGGs), presented in [JLB08] and [SLB09], exploit the
underlying structure in non-Bayesian games to compute the expected utility for
an agent playing an action, given the mixed strategies of all other agents.

4.1 Representing games with action-graphs

The AGG representation can represent any normal-form game [JLB08], but can
represent them much more compactly when the following kinds of structure
exist in the agents’ utility functions, defined by when they exist,

Strict independence This kind of structure exists when only the identities of
two agents are needed to determine whether they can affect each other’s
utilities through their actions.

6

Context-specific independence This kind of structure exists when both the
identities of and the actions taken by two agents are needed to determine
whether they can affect each other’s utilities through their actions.

Anonymity This kind of structure exists when only the actions taken by two
agents are needed to determine whether they can affect each other’s util-
ities through their actions.

Normal form games represent the utility functions of each agent as a huge
lookup take that returns the agent’s utility for a full action profile, and hence
grows exponentially in the number of agents.

Action graph games represent the utility functions of all agents as a graph
G = (A,E), where A is the set of all distinct actions. An agent’s utility for an
action a ∈ A is fully determined by the number of agents that choose action a
and the number of agents that choose each action a′ ∈ ν(a), where ν(a) is the
neighbourhood of a in G. The utility of any agent choosing action a in an action
graph is ua(c(a), ca), where c(a) is the number of agents that chose action a and
ca ≡

(
c(a′), a′ ∈ ν(a)

)
is a tuple representing the number of agents that chose

each action a′ ∈ ν(a) [JLB08].
AGGs can be used to represent any normal-form game, despite the restricted

form of each action node’s utility function. A normal-form game with no struc-
ture can be represented by an AGG that has a separate node for every action in
every agent’s action set. An action node for agent i, ai, has every action node of
every other agent in its neighbourhood and hence uai(c(ai), ca) = uai(ai, a−i) =
ui(ai, a−i) and uai degenerates into an exponential-size lookup table for node
ai.

AGGs, in addition to being space-efficient, also enable the time-efficient
computation of expected utility.

4.2 Computing expected utility with action-graphs

DOBSS and algorithms for finding Nash equilibria rely heavily on efficiently
computing the expected utility of a particular action ai for an agent i, given
the mixed strategy profile σ−i for all other agents, V iai

(σ−i) [JLB08]. The direct
algorithm for calculating this expected utility is

V iai
(σ−i) =

∑
a−i∈A−i

ui(ai, a−i)p(a−i|σ−i)

p(a−i|σ−i) =
∏
j 6=i

σj(aj)

where aj is agent j’s action in action profile a−i [SLB09]. This direct algorithm
is exponential in the number of agents [JLB08].

Expected utility can be much more efficiently computed for games with
structure when the AGG representation is used. Expected utility computation
in AGG exploits strict and context-specific independence through projection
and exploits anonymity through a dynamic programming approach [JLB08].

7

4.2.1 Strict and context-specific independence

The utility function for action ai has the form uai(c(ai), ca), implying that
the value of V iai

(σ−i) does not depend on the states of the action nodes that
are outside ν(ai). Therefore, the action nodes in A \ ν(ai) are mapped to a
dummy node ∅ [JLB08]. Assuming for simplicity that all of the agents’ action
sets have the same size α and that there are q agents, the expected utility
computation is a sum over O(αq−1) terms in the normal-form game, but is a
sum over O((|ν(ai)|+ 1)q−1) terms in AGG representation [JLB08].

If |ν(ai)| is small, this is amounts to a large speedup over normal-form games.

4.2.2 Anonymity

The expected utility computation, as presented so far, still takes exponential
time in the number of agents. The exponential time complexity results because
each utility uai(c(ai), cai) must be weighted by the probability p(c(ai), cai) that
c(ai) agents could be playing ai and cai agents could be playing in each respec-
tive node in ν(ai) [JLB08].

Assume for simplicity that exactly q′ agents, not including agent i, could
play ai and any action in ν(ai). Then the number of different configurations of
ai and ν(ai) that p(c(ai), cai) would have to be computed for, without taking
anonymity into account, would be O((|ν(ai)|+1)q

′
), but the number of different

configurations would be only be O(q′|ν(ai)|+1), if anonymity were taken into
account [JLB08].

[JLB08] provide a dynamic programming algorithm to compute every value
p(c(ai), cai) efficiently by making use of anonymity.

4.3 Can action-graph games be used to speed up DOBSS?

DOBSS involves the execution of a MILP solver on a program equivalent to
the MIQP described previously. The expected utilities in the MIQP have the
following form

EUl(sl, sf) =
∑
t∈T

pt
∑
j∈Al

∑
k∈Af

ul(a
j
l , a

k
f)sl(a

j
l)s

t
f (akf)

=
∑
t∈T

pt
∑
j∈Al

ul(a
j
l , a

kt

f)sl(a
j
l)

EU tf (sl, akf) =
∑
j∈Al

uf (ajl , a
k
f)sl(a

j
l)

where ak
t

f is the pure strategy selected by a follower of type t. The ability of
AGGs to exploit anonymity does not provide any gains in efficiency for DOBSS
because only two players are involved.

Patrolling is a task that occurs in a spatial domain, with equivalent action
sets for the crime fighter and the criminal, so it is very likely that an action
node’s neighbourhood is much smaller than the total number of actions, and

8

hence a speedup should be provided by the ability of AGGs to exploit context-
specific independence. However, since the follower only needs to choose pure
strategies, the expected utility computations only involve summations over the
leader’s action set.

Therefore, it seems as though the AGG representation cannot offer signifi-
cant speedups in expected utility computation for DOBSS, but a deeper look
at the workings of a broad class of MILP-solving algorithms reveals a different
story.

5 Mixed-integer linear programming and
the importance of
efficient expected utility computation

A mixed-integer linear program (MILP) has the form

minx cTx

subject to Ax = b

x ∈ (Zn−p,Rp)

and where p = n, this corresponds to a linear program (LP) [FM05]. An LP
relaxation of a MILP is obtained by removing all constraints in the MILP that
require variables to be in Z.

MILPs are closely related to LPs, as illustrated by the pseudocode given in
[FM05] of a broad class of MILP solvers known as cutting-plane methods.

Algorithm 1 Cutting-plane method to solve MILP

k = 0
LP 0 is the LP relaxation of MILP
x̃0 be the solution of LP 0, obtained by an LP solver
while x̃k /∈ (Zn−p,Rp) do

Find a cutting plane aTcutx = bcut, defined as a linear inequality that is
satisfied by all feasible solutions to MILP , but not by x̃k.
Add aTcutx = bcut to LP k to obtain LP (k+1)

k = k + 1
Solve LP k for x̃k with an LP solver

end while
return x̃k

It is known that linear programming can be solved in polynomial time
[FM05], so the cutting-plane method uses the LP relaxation to get a suitable
starting point x̃0 and then attempts to satisfy the integer constraints by adding
cutting planes and re-running the LP solver on the new LP until all integer
constraints are satisfied. Hence, every single LP that must be solved in the
cutting-plane method begins with a solution where a variable that should be an

9

integer is actually a real number. Therefore, the expected utility computations
at each stage will involve mixed strategies for the follower, instead of just pure
strategies, as previously assumed.

It seemed that the ability of AGGs to capture context-sensitive independence
would not be useful in the MILP solver in Section 4.3, but a closer analysis of
a particular MILP solving method, the cutting-plane method, reveals that this
ability could actually result in substantial speedups in DOBSS.

6 Solving the m-criminal problem

The ability of AGGs to capture anonymity structure cannot be exploited in
the 1-leader, 1-follower Bayesian Stackelberg game with n follower types. The
1-leader, m-follower Bayesian Stackelberg game with n follower types for each
follower would be just as hard to solve as a Nash equilbrium for a Bayesian game
with m-followers with n follower types, because once the leader has committed
to its strategy, the m followers are left to reason against each other in the
resulting Bayesian game.

However, if it is assumed that the n followers are unable to affect each other
through their actions, the resulting problem should still be tractable. This is
because each follower the resulting m-follower Bayesian Stackelberg game only
needs to solve a single-agent linear optimization problem, as the single follower
did in Section 3.

The resulting MIQP, with m followers, where F = N − {l} is the set of
followers is

maxsf ,sl,u∗f

∑
t∈T

pt
∑
j∈Al

∑
a−l∈A−l

ul(a
j
l , a−l)sl(a

j
l)
∏
f 6=l

stf (akf)

subject to
∑
j∈Al

sl(a
j
l) = 1

∑
k∈Af

stf (akf) = 1 ∀t ∈ T, ∀f ∈ F

0 ≤ u∗f − EU tf (sl, akf) ∀k ∈ Af ,∀t ∈ T, ∀f ∈ F
ut
∗
f − EU tf (sl, akf) ≤ (1− stf (akf))M ∀k ∈ Af ,∀t ∈ T, ∀f ∈ F

sl(a
j
l) ≥ 0 ∀j ∈ Al

stf (akf) ∈ {0, 1} ∀k ∈ Af ,∀t ∈ T, ∀f ∈ F
ut
∗
f ∈ R ∀t ∈ T, ∀f ∈ F

and now the evaluation of
∑
t∈T p

t
∑
j∈Al

∑
a−l∈A−l

ul(a
j
l , a−l)sl(a

j
l)
∏
f 6=l s

t
f (akf)

will be much faster in the AGG representation for games with context-sensitive
independence and anonymity. DOBSS should consequently experience signifi-
cant speedup.

10

References

[CS06] Vincent Conitzer and Tuomas Sandholm. Computing the optimal
strategy to commit to. In EC ’06: Proceedings of the 7th ACM
conference on Electronic commerce, pages 82–90, New York, NY,
USA, 2006. ACM.

[FM05] Armin Fugenschuh and Alexander Martin. Computational integer
programming and cutting planes. In K. Aardal, George Nemhauser,
and R. Weismantel, editors, Discrete Optimization, volume 12,
chapter 2. Elsevier, December 2005.

[JLB08] Albert Xin Jiang and Kevin Leyton-Brown. Action-graph games.
Technical Report TR-2008-13, University of British Columbia,
September 2008.

[PPM+08a] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind
Tambe, Fernando Ordonez, and Sarit Kraus. Playing games for
security: an efficient exact algorithm for solving bayesian stackel-
berg games. In AAMAS ’08: Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems,
pages 895–902, Richland, SC, 2008. International Foundation for
Autonomous Agents and Multiagent Systems.

[PPM+08b] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind
Tambe, Fernando Ordez, and Sarit Kraus. Efficient algorithms to
solve bayesian stackelberg games for security applications. In Dieter
Fox and Carla P. Gomes, editors, AAAI, pages 1559–1562. AAAI
Press, 2008.

[SC73] M. Simaan and J. B. Cruz. On the stackelberg strategy in nonzero-
sum games. Journal of Optimization Theory and Applications,
11(5):533–555, September 1973.

[SLB09] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Al-
gorithmic, Game-Theoretic, and Logical Foundations. Cambridge
University Press, New York, 2009.

11

