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Abstract

Ranking systems are central to many internet applications including,
notably, Google’s PageRank algorithm for ranking web pages. Ranking
systems are a special case of a social choice problem in which the set of
agents and the set of outcomes coincide. In this paper we consider PageR-
ank as a particular ranking system and we present two axiomatizations
that allow PageRank to be studied from a social choice perspective. The
first axiomatization is normative and leads to the theory that no ranking
system can simultaneously satisfy two desirable properties. Despite this
discouraging result, PageRank is nonetheless highly successful and the sec-
ond, descriptive, axiomatization characterizes PageRank uniquely among
ranking systems. We conclude by suggesting areas for further research,
including axioms describing vulnerability to manipulation and preferences
submitted directly by human users.

1 Introduction

Ranking systems play an important role in the domain of e-commerce and inter-
net technologies by creating global rankings of websites or on-line trade partners.
Two well-known examples are eBay’s reputation system and Google’s PageR-
ank algorithm. Although these systems have been very successful, very little
work was initially done to formally characterize their performance and under-
stand their theoretical bases. In response, Altman and Tennenholtz studied
page ranking systems in a social choice framework ([1], [2]). In particular, they
addressed the questions of what properties a ranking system should have, and
which properties of a particular page ranking algorithm differentiate it from
other page ranking algorithms.

In a scenario with multiple self-interested agents and several possible out-
comes to be chosen from, it is often desirable to collect the agent’s preferences
for these outcomes and aggregate these to make a final choice that reflects the
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preferences of the agent population. The most common example of such a prob-
lem would be voters voting for their most-preferred candidate, where ideally we
want to eventually select a candidate who best reflects the collective preferences
of the voters. This general class or problems is referred to as social choice prob-
lems. Social choice theory is the study of how to solve this problem in a way so
as to satisfy certain desirable properties. Social choice theory is nonstrategic -
agents have preferences, and no agent tries to hide their true preferences in order
to manipulate the outcome. The agents report their preferences as an ordering
over the outcomes, which expresses their order of preference over these.

By Arrow’s impossibility theorem, there is no social choice function that
satisfies some minimal requirements that we would want such functions to have.
However, an appropriate social choice function can be achieved by relaxing any
one of these requirements. As we will explore in this paper, a similar set of
properties and results can be derived for the special case of page ranking.

In this paper we will look at an axiomatic approach that allows us to formally
define the PageRank ranking system in the context of social choice theory. In
the next section we introduce ranking systems as a special case of social choice
and in section 3 we define the PageRank ranking system. Section 4 introduces
normative axioms that one may require for any ranking system, and descrip-
tive axioms that relate to PageRank in particular. Further discussion of these
axiomatizations is presented in section 5.

2 Ranking Systems

One interesting special case of the social choice problem occurs when the set of
agents and the set of outcomes coincide. In such a setting, the agents express
their evaluations of each other by submitting a two-level preference (vote or no
vote) for each other agent. This case is referred to as the problem of ranking
systems, and has several interesting features. For one, agents voting for any
subset of the other agents introduces transitive effects - being voted for by an
agent who has been voted for by others is deemed more important than being
voted for by an agent who has not been voted for.

Ranking systems are not governed by Arrow’s impossibility theorem [3]. In
a ranking system, agents partition outcomes into only two sets while Arrow’s
theorem is defined in a setting with arbitrary preferences and three or more
possible outcomes. As we shall see in the following sections there are properties
similar to Arrow’s axioms that we would like to hold in a ranking systems
setting.

Ranking systems share some commonalities with approval voting. In ap-
proval voting, each agent can cast a single vote for as many of the outcomes as
he wishes, and the outcome with the most votes is selected. While the concept
of each agent voting for a number of outcomes is similar to ranking systems,
it is important to note that in ranking systems the set of agents and outcomes
coincide, which is not the case with approval voting.
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3 PageRank

The PageRank algorithm models the link structure of the internet as a directed
graph G = (V,E) where v ∈ V is a web page and (v1, v2) ∈ E is a link from
page 1 to page 2 and represent a vote for page 2 by page 1. The basic idea
is that the rank of a page is calculated based on the number of votes a page
received and the ranking of the voters.

An intuitive model that can help understand PageRank is the Random Surfer
Model [4], which corresponds to the standing probability distribution of a ran-
dom walk along the graph G. This models the behaviour of a random surfer who
clicks on successive links at random. Each link from a given page is assigned an
equal probability. This captures the idea that pages that have been linked to
more often will be reached by the random surfer with a higher probability.

One point worthy of mention is that if a real web surfer is caught in a
small loop of web pages, it is unlikely that the surfer will continue in the loop
forever. Instead, he or she will just jump to some other page. This behaviour is
also reflected the Random Surfer Model; with some probability the surfer stops
following successive links and moves to some random page.

We now define the PageRank matrix which captures this idea formally. We
begin with the following definition:

Definition 3.1 Let G = (V,E) be some graph and v ∈ V be some vertex.
Let PG(v) = {u|(u, v) ∈ E} and SG(v) = {u|(u, v) ∈ E} denote the predecessor
and successor sets of v in G respectively. When G is understood from context,
we will use P (v) and S(v).

The PageRank Matrix AG (of dimension n× n) is defined as:

[AG]i,j =
{

1/|SG(vj)| (vi, vj) ∈ E
1 otherwise

Using the random surfer model, we may define PageRank as follows:

Definition 3.2 Let G = (V,E) be some strongly connected graph, and as-
sume V = {v1, v2, ..., vn}. Let r be the unique solution of the system AG · r = r
where r1 = 1. The PageRank PRG(vi) of a vertex v1 ∈ V is defined as
PRG(vi) = ri. The PageRank ranking system is a ranking system that for the
vertext set V maps G to �PR

G , where �PR
G is defined as: for all vi, vj ∈ V :

vi �PR
G vj if and only if PRG(vi) ≤ PRG(vj). (Reproduced from [1])

To achieve this, a rank is then calculated for each page, based on the sum
of the links to that page. As illustrated in Figure 1, this calculation takes into
consideration the fact that links from less important pages have less weight than
links from more important pages. It also divies the weight of a page equally
among its links to capture the idea that the fewer successors a page has, the
more strongly it is recommending each of them.
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Figure 1: Simplified PageRank Calculation (reproduced from [4])

PR(v1) =
∑

v∈P (v1)

PR(v)
|S(v)|

(1)

We should mention here that PageRank as described in [4] and [5] is vulner-
able to manipulation. One way in which it can be manipulated is that an entity
is free to introduce as many agents into the graph as he chooses, and is able to
control their preferences [6]. This and many other considerations are accounted
for in the PageRank algorithm currently used in the Google search engine, al-
though details of that particular implementation have not been published.

4 Axiomatizing PageRank

We will examine two approaches to axiomatizing PageRank: normative and
descriptive. A normative approach starts by defining properties that are desir-
able in a social choice function, and attempts to identify functions that satisfy
these properties. Sometimes this normative approach leads to an impossibility
theorem that proves that no such function exists, such as Arrow’s impossibility
theorem. By contrast, a descriptive approach starts by analyzing a particular
function and attempts to fully characterize it using a minimal set of axioms.
These axioms should be selected in a way such that any other function that
satisfies them must coincide with the function under consideration. A set of
axioms that has these two properties is termed a representation theorem, and
can be an effective tool in the understanding and comparison of different social
choice functions. In this section we present an overview of the axioms and re-
sulting theorems. We do not intend to reproduce the proofs of the theorems;
the interested reader is referred to the original papers for details.
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4.1 Normative Axioms

We have seen that Arrow’s impossibility theorem does not apply to page ranking,
but it turns out that another, similar impossibility theorem exists. This theorem
is general to all ranking systems and considers two properties: transitivity and
ranked independence of irrelevant alternatives (RIIA).

The first property, transitivity, is an important idea in the PageRank al-
gorithm; by this property, a vote from a highly ranked page is given higher
importance that a vote from a lower-ranked page. Thus, a vote for page a is
indirectly also a vote for all pages linked to by a.

Axiom 4.1.1 (Strong Transitivity) Let F be a ranking system. We say
that F satisfies strong transitivity if for all graphs G = (V,E) and for all ver-
tices v1, v2 ∈ V : Assume that there is a 1-1 mapping (but not necessarily onto)
f : P (v1) 7→ P (v2) such that for all v ∈ P (v1) : v � f(v). Then v1 � v2.
Further assume that either f is not onto or for some v ∈ P (v1) : v � f(v).
Then v1 � v2. (Reproduced from [4])

Strong transitivity states that page a should be ranked higher than page
b if page a received at least as many votes as page b and each vote for b can
be paired in a 1-1 manner with a vote for a from a higher or equally-ranked
voter. We also wish to define a weaker requirement that transitivity hold when
comparing agents whose predecessors have an equal number of successors.

Axiom 4.1.2 (Weak Transitivity) Let F be a ranking system. We say
that F satisfies weak transitivity if for all graphs G = (V,E) and for all vertices
v1, v2 ∈ V : Assume that there is a 1-1 mapping f : P (v1) 7→ P (v2) such that for
all v ∈ P (v1) : v � f(v) and |S(v)| = |S(f(v))|. Then v1 � v2. Further assume
that either f is not onto or for some v ∈ P (v1) : v � f(v). Then v1 � v2.
(Reproduced from [4])

We see that PageRank does not satisfy strong transitivity since the relative
importance of a link from page a is inversely proportional to |S(a))| by equation
1. However, according to [4], strong transitivity is a less desirable property than
weak transitivity in this application. By the following equation, we see that weak
transitivity holds:

PR(v1) =
∑

v∈P (v1)

PR(v)
|S(v)|

≤
∑

v∈P (v1)

PR(v)
|S(f(v))|

≤
∑

v∈P (v2)

PR(v)
|S(v)|

= PR(v2) (2)

Note that PageRank relies on mathematical calculations, but this is a par-
ticular implementation, not necessarily a property of the family of algorithms
that satisfy weak transitivity.

The second normative property, RIIA, is similar to Arrow’s IIA, except that
the ranking system considers the rank, but not the identity, of the voters.
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Axiom 4.1.3 (Ranked Independence of Irrelevant Alternatives (RIIA))
A ranking rule satisfies RIIA if the relative rank between pairs of outcomes is
always determined according to the same rule, this rule depends only on: the
number of votes each outcome received; and the relative ranks of these voters.
(Reproduced from [3])

It can be shown by counter-example that PageRank does not satisfy RIIA
[2]. Approval voting, however, does satisfy RIIA since by approval voting the
candidate with the greatest number of votes receives the highest ranking. Of
course approval voting does not satisfy strong or weak transitivity since the
rankings of the voters are not considered. Therefore, these axioms can be satis-
fied independently and the question then becomes whether there exists a class
of ranking system that simultaneously satisfy both transitivity and RIIA. The
details are omitted here, but it is shown in [2] that no such ranking system exists.

Theorem 4.1 No ranking system can simultaneously satisfy weak transitiv-
ity and RIIA [2].

4.2 Descriptive Axioms

Since PageRank is such a widely-used and highly influential ranking system, it
is beneficial to have a descriptive axiomatization as a means of characterizing
and evaluating the ranking system. What follows are five desirable properties
that describe PageRank (reproduced from [1]).

The first axiom states that the ranking procedure should be independent of
the names of the pages.

Axiom 4.1 (Isomorphism) A ranking system F satisfies isomorphism
if for every isomorphism function ϕ : V1 7→ V2, and two isomorphic graphs
G ∈ GV1 , ϕ(G) ∈ GV2 :�F

ϕ(G)=�
F
G.

The second axiom states that if a does not link to itself and a has a rank at
least as high as b, then adding a link from a to itself should result in a being
ranked higher than b. The relative ranking of all pages other than a should
remain unchanged by the addition of the link from a to itself.

Axiom 4.2 (Self Edge) Let F be a ranking system. F satisfies the self
edge axiom if for every vertex set V and for every vertex v ∈ V and for every
graph G = (V,E) ∈ GV s.t. (v, v) /∈ E, and for every v1, v2 ∈ V {v}: Let
G′ =[insert text!] If v1 �F

G v then v �F
G′ v1; and v1 �F

G v2 iff v1 �F
G′ v2.

The third axiom states that the relative ranking of all pages should be un-
changed if a set of pages is inserted between page a and a’s successors, and the
following changes to the links are made: all original links from a are removed;
one link is inserted from a to each of the new pages; and one link is added from
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each of the new pages to all pages previously linked to by a. This is illustrated
in Figure 2.

Axiom 4.3 (Vote by Committee) Let F be a ranking system. F satisfies
vote by committee if for every vertex set V , for every vertex v ∈ V , for every
graph G = (V,E) ∈ GV , for every v1, v2 ∈ V , and for every m ∈ N: Let G′ =
(V ∪ {u1, u2, ..., um}, E\{(v, x)|x ∈ SG(v)} ∪ {(v, ui)|i = 1, ...m} ∪ {(ui, x)|x ∈
SG(v), i = 1, ...,m}), where {u1, u2, ..., um} ∩ V = ∅. Then, v1 �F

G v2 iff
v1 �F

G′ v2.

The fourth axiom states that if pages a and b have no predecessors in com-
mon and a and b link to the same set of pages, then the relative ranking of all
pages except a and b are unchanged if a and b are removed and replaced by a
single node, say c, which is linked to by all of a and b’s predecessors, and which
links to all of a and b’s sucessors. This is illustrated in Figure 2.

Axiom 4.4 (Collapsing) Let F be a ranking system. F satisfies collaps-
ing if for every vertex set V , for every v, v′ ∈ V , for every v1, v2 ∈ V \{v, v′},
and for every graph G = (V,E) ∈ GV for which SG(v) = SG(v′), PG(v) ∩
PG(v′) = ∅, and[PG(v)∪PG(v′)]∩{v, v′} = ∅: Let G′ = (V \{v′}, E\{(v′, x)|x ∈
SG(v′)}\{(x, v′)|x ∈ PG(v′)} ∪ {(x, v)|x ∈ PG(v′)}). Then v1 �F

G v2 iff v1 �F
G′

v2.

The final axiom states that if a has k predecessors, all with equal ranks, and
a also has k sucessors, then the relative ranking of all pages excluding a should
be unchanged if a is removed and each of a’s predecessors is linked to one of a’s
successors in a 1-1 manner. This is illustrated in Figure 2.

Axiom 4.5 (Proxy) Let F be a ranking system. F satisfies proxy if for ev-
ery vertex set V , for every v ∈ V , for every v1, v2 ∈ V \{v}, and for every graph
G = (V,E) ∈ GV for which |PG(v)| = |SG(v)|, for all p ∈ PG(v) : SG(p) = {v},
and for all p, p′ ∈ PG(v): p 'F

G p′: Assume PG(v) = {p1, p2, ..., pm} and
SG(v) = {s1, s2, ..., sm}. Let G′ = (V \{v}, E\{(x, v), (v, x)|x ∈ V }∪{(pi, si)|i ∈
{1, ...,m}). Then v1 �F

G v2iffv1 �F
G′ v2.

Theorem 4.2 The PageRank algorithm presented in [4] satisfies isomor-
phism, self edge, vote by committee, collapsing, and proxy. In addition, every
ranking system that satisfies these properties coincides with PageRank.

5 Discussion

Although the “true” ranking of any webpage is inherently subjective, the goal
of automatically generating rankings requires objective measures of success. By
modeling page ranking systems in a graph-theoretic way, we are able to reason
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Figure 2: Visualization of Axioms (reproduced from [1])
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from a social choice perspective. Axioms provide us with objective requirements
for our system and allow for characterization and comparison.

Although it is discouraging to learn that no ranking system can satisfy the
two basic axioms of transitivity and RIIA, we have clear evidence from the
success of Google that page ranking systems can nonetheless be valuable and
can provide satisfying results to human users. By studying transitivity and
RIIA, we can understand the trade-offs that are made in designing a ranking
system, and also better understand the differences between approaches such
as approval voting and PageRank. Among other things, this helps us improve
existing ranking systems and understand appropriate settings for their use.

The normative approach allowed us to identify that PageRank satisfies weak
transitivity, but did not characterize the algorithm uniquely among other models
that might also satisfy weak transitivity. The descriptive approach provides
more detail on the properties that hold when PageRank is represented as a graph
that satisfies weak transitivity. This provides us with insight into the working
of PageRank and gives us a framework in which to analyse any modifications
that are made to the PageRank algorithm due to practical considerations.

It should be noted that the descriptive axioms discussed here are based on
the PageRank algorithm as described in [4]. It is known that Google’s PageRank
accounts for other factors such as relevance of search words on a page, suscept-
ability to manipulation, and actual visits to the page. Since these details have
not been published and are likely being regularly updated, it is reasonable to
restrict the social choice analysis to the basic graph-theoretical model. However,
in practice, these axioms are likely not a complete characterization.

In particular, the axiomatic treatment of ranking system in [1] and [2] does
not address vulnerability to manipulation. In practice, this is such an important
consideration that it has driven many changes to the PageRank algorithm. As
such, it may be desirable to create a set of normative axioms to formally de-
scribe different ways that ranking systems could be manipulated and desirable
properties of a ranking system to minimise this problem.

Many of the ways that the true PageRank algorithm differs from that pre-
sented in [4] are the result of one fundamental assumption: that links are a
direct indicator of the relevance of a page. Of course, this is not the case.
Although we rank pages based on the votes of a set of agents (pages), we are
hoping to provide a ranking that satisfies a different set of agents (human users).
This is interesting since at no point in the ranking process have we directly re-
ceived preferences from the users we are trying to satisfy. This consideration has
not yet been formally addressed in othe social choice literature. Although this
can’t be incorporated into a descriptive model without more information on the
actual implementation, it may be beneficial to consider a normative approach
whereby the user’s site visits and result click-throughs are treated as a form of
approval voting that occurs after the initial ranking. This would allow for a
formal model of preferences submitted by human users to be compared to the
results presented to those users.
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6 Conclusions

Page ranking is a special case of social choice where the set of agents coincides
with the set of outcomes and each agent ranks the others on a two-level pref-
erence system. As such, page ranking is not governed by Arrow’s impossibility
theorem, but a similar theorem exists stating that no ranking system can simul-
taneously satisfy weak transitivity and RIIA. PageRank is a well-known and
widely-used page ranking system that satisfies weak transitivity but not RIIA.
PageRank is uniquely characterized by the axioms of isomorphism, self edge,
vote by committee, collapsing, and proxy. Any ranking system that satisfies
these five axioms coincides with page rank. In practice, Google implements a
ranking system more complex than PageRank as presented in [4] which is likely
not fully characterized by the above axioms. The current axiomatizations of
page ranking systems do not address the following two ideas: that resistance to
manipulation is an important property of a ranking system; and that approval
voting by human users in the form of page visits or link clicks is a valuable
source of preference declarations.
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