
CPSC 532

Exploiting k-symmetry for support enumeration

on Action-Graph Games

April 26, 2009

Samantha Leung

Abstract

We implement an improvement to support enumeration on Action-
Graph games by removing equivalent support profiles under k-symmetry.
Our experimental results show small but consistent improvements in the
run time of the algorithm. In addition, we propose a small modification
to the IRSDS procedure.

1 Introduction

This project complements the author’s current work with David Thompson and
Kevin Leyton-Brown on an implementation of support enumeration on Action-
Graph games (SEM-AGG). In support of SEM-AGG, we implement computa-
tional enhancements available from exploiting k-symmetry in games, and pro-
vide an empirical evaluation of the effectiveness of these changes. [5].

1.1 Action-Graph Games

We are interested in the computation of Nash equilibria in Action-Graph Games,
a game representation introduced by Bhat and Leyton-Brown [1]. Similar to
the graphical game[3], the Action-Graph Game (AGG) is a fully-expressive and
compact representation that represents agents’ actions as nodes of a directed
graph. An agent’s utility for choosing a certain action can be computed from the
number of players that has chosen each of the neighboring nodes. A distribution
of players over action nodes is called a configuration. One can see that utility
functions for nodes with few neighbors can be represented compactly. Indeed,
by exploiting utility function structures such as independence, anonmity, and
additivity, games that require exponential space in other popular formats can
be represented in polynomial space as AGGs.

1



Figure 1: A JobMarketGame in the AGG representation, taken from [2].

In addition to being a compact representation, AGGs also allow for efficient
computation on games when compared to the normal form. For example, Jiang
et al presented a polynomial-time algorithm to compute an agent’s expected
utility in AGGs where nodes have bounded in-degrees [2]. This is an exponen-
tial speedup over the standard method of computing expected utility, which is
polynomial in the size of the normal form and hence potentially exponential
in the size of the equivalent AGG. Because the computation of expected util-
ity is a bottle-neck for many equilibrium computation algorithms, the efficient
computation of expected utility is very useful.

Thompson leveraged these dramatic efficiencies of AGGs for the compu-
tational equilibrium analyses of complex, realistic auction problems [6]. Not
only did Thompson’s experimental results provide new insight into rules in ad-
vertising auction settings; the experiments also shows the power of the AGG
representation. These games would have been too big in normal form to even
store one on a modern harddrive, let alone computation with the games.

Since it is beyond the scope of this project to give a technical introduction to
the AGG representation, the reader is directed to [6] for a concise introduction,
and [2] for a more comprehensive discussion of the AGG format.

1.2 Support enumeration

Recall that the support of a player’s strategy is the set of actions played with
positive probability, and a support profile specifies a support for each player.
Support enumeration is a simple algorithm that searches through the support
profile space to find Nash equilibria. Although simple, Porter et al [5] demon-
strated that support enumeration for normal form games is empirically faster

2



Figure 2: Abstract illustration of support enumeration. The current support
profile has player i playing a1 and player i+1 playing a2.

than state of the art algorithms, Simplicial Subdivision and Govindan-Wilson.
We adopt the enumeration approach used in [5], that is, to perform a depth

first search, with each level of the search tree containing the possible supports
for one player. Figure 1.2 provides an illustration.

Because AGGs are compact and have been shown to facilitate efficient game
theoretic computation [2], it is anticipated that by using support enumeration on
AGGs, appreciable improvements can be achieved comparing to other equilibria
computation algorithms on the normal form game.

In addition to being a simple algorithm using shallow heuristics, support
enumeration is attractive in that it can find entire sets of equilibria; for example
all pure strategy equilibria, all k-symmetric equilibria, or potentially all equi-
libria. Here we focus on finding one equilibrium, which, due to the order of
enumeration, will be the equilibrium with the smallest support.

1.3 K-symmetry in games

A game is symmetric if all players are identical and indistinguishable. In a
symmetric game, the utility of each player who chooses a certain action depends
only on the distribution of the other players among the actions.

An AGG game is called k-symmetric if there are k classes of agents, where
agents within each class share the same actions and thus payoffs, and therefore
are identical to each other. However, while symmetry information is readily
available in the AGG format, extracting player classes from a normal form game
would require time polynomial in the size of the game. Therefore, k-symmetry
considerations were not applicable for support enumeration algorithm in [5] for
the normal form game.

Although support enumeration is commonly appreciated for its lack of deep
heuristics, we feel that k-symmetry is a sufficiently shallow and general charac-
teristic for AGGs. Furthermore, since all games are trivially n-symmetric (with
n being the number of players), algorithms that assume k-symmetry can handle
any AGG.

Because many games of interest are k-symmetric, we would also like to make

3



use of symmetry information to reduce the search space during support enumer-
ation.

[2] considers the role of k-symmetry in equilibrium computation and provides
an efficient algorithm for computing expected utility for k-symmetric strategy
profiles. However, we do not make use of these algorithms here because we are
interested in finding general equilibria. Restricting our search to k-symmetric
equilibria would likely mean finding a different equilibrium than that with the
smallest support. Because we would like to provide a direct comparision between
the performance with and without k-symmetric considerations, it is important
that the same equilibria be found under both cases. Furthermore, although we
can use the specialized k-symmetric algorithms only when k-symmetric support
profiles are encountered, because the number of symmetric support profiles is
very small comparing to generic support profiles, we anticipate that this effort
will not yield significant improvements to the run time.

2 Observations

2.1 Equivalent support profiles

We call the tuple of support sizes for each player a support size profile.
Porter et al [5] showed that the shortest time to find an equilibrium is very

often achieved by enumerating support profiles in the order of increasing total
support sizes for all players, further ordered by the balance of the support sizes.
The rationale is that small support equilibria with balanced supports often
exists. Therefore, we enumerate support profiles ordered by their underlying
support size profiles. A lexicographical ordering consistent with that of [5] is
used for ordering support profiles with the same support sizes.

For simplicity, let us assume each of n agents has the same number of actions
in their action sets, and denote this number by A. Since there are An distinct
support size profiles, but only

(
n+a−1

a

)
after taking k-symmetry into account,

the reduction in search space should be noticeable in run time.
Given a fixed support size profile, there are also equivalent support profiles

if two or more players in the same player class have the same support size. For
example, if player 1 and player 2 belong to the same class and have the same
support size 1, then player 1 playing a1 and player 2 playing a2 is equivalent to
player 1 playing a2 and player 2 playing a1.

In our implementation, equivalent support size profiles are eliminated by
limiting our search to the set of support size profiles that are weakly increasing
within each player class. This removes equivalent support size profiles by making
sure we only use one permutation from each equivalent class of support and
support size profiles.

Similarly, for a given support size profile, by enumerating only support pro-
files that have weakly increasing supports, we avoid testing support profiles that
are equivalent under k-symmetry.

4



2.2 IRSDS modification

Porter et al [5] also showed that one of the major helpers of the support enumer-
ation algorithm is iterated removal of strictly dominated strategies (IRSDS). As
per [5], instead of being applied only to the original actions, IRSDS is applied
on partial support profiles as a means of quickly pruning support profiles that
cannot be an equilibrium. Candidate strategies that contain strictly dominated
actions cannot be part of an equilibrium and hence are removed. As more
players are assigned supports, the outcome space gets smaller and IRSDS can
prune more. Because checking for domination by mixed strategies is relatively
expensive, we only check for domination by pure strategies.

When checking whether an action ai dominates another action aj , we check,
given the current partial support profile, whether there are any possible con-
figurations where aj yields at least as much utility as ai. As noted before,
as the partial support profile becomes more restricted, the number of possible
configurations decrease, and the number of dominated actions weakly increases.

One observation pertaining to k-symmetry is that, if we know that given a
partial support profile, action ai dominates action aj for player p, then for any
player p’, if their domain is a superset of p’s, then ai must also dominate action
aj for p’.

The reason is that, when determining whether ai dominates aj for p, we
compute the set of possible configurations that can result from a given partial
support profile. If we had done the computation for p’ instead of p, then p would
have contributed to the possible configurations instead of p’. However, this set
of possible configurations must be a subset of that produced by including p’.
As a result, if there were no configurations where aj does as least as well as ai

when p’ is one of the other players, then there will still be no such configurations
when p is part of the players determining the configurations.

Because removing an action from p’ can only reduce the number of possible
configurations, we know that we can proceed to remove aj from all players p’
whose action domain is a superset of p, in the same step.

Due to time constraints and technical malfunctions, we are unable to execute
experiments with this IRSDS modification at this time. 1

3 Experimental Setup

3.1 Game Distributions

We attempt to select a representative set of game distributions from GAMUT
[4], subject to the constraint that only a limited number of games are currently
available in the AGG format. In addition to GAMUT distributions, several

1For the sake of academic honesty the writer is compelled to elaborate on the situation
before hardware malfunctions occured. A limited set of data has indeed been collected for the
IRSDS modification. However, in over half of the instances, it appears that the algorithm has
missed support profiles that could be equilibria. The writer suspects that this is either due
to buggy implementation or flaws in the stated observations about the IRSDS procedure.

5



Ad-Auction variants from [6] have been added as representatives of ’real-life’
games.

We have used a smaller number of distributions than in Porter’s experiments
[5], because the number of GAMUT distributions available in the AGG format
is limited.

Our test distributions consists of 860 game instances in total, varying from 6
to 10 players and 5 to 12 actions, with 5 randomized instances per distribution,
player and action combination. Table 3.1 show the GAMUT game distributions
used.

Distribution
1 player class (symmetric game)
JobMarketGame
RandomSymmetricAGG-RandomGraph (3A edges)
RandomSymmetricAGG-RandomGraph (A edges)
RandomSymmetricAGG-SmallWorldGraph (each edge is present with 0.5 probability)
RandomSymmetricAGG-StarGraph
RandomSymmetricAGG-RandomGraph (A/2 edges)
CoffeeShopGame (With DecreasingFunction for home, near, far; SumFunction for combine)
3 player classes (3-symmetric)
IceCreamGame
n player classes
AdAuction (Weighted, PPC, GFP)
AdAuctionVarian (Unweighted, GSP)
AdAuctionYahoo (Unweighted, PPC, GSP)

The interested reader is directed to [6] for discussion on the different AdAuc-
tion settings, [2] for the CoffeeShopGame, IceCreamGame, and JobMarketGame
settings, as well as GAMUT documentation for more information about the dis-
tributions.

3.2 Hardware

Our experiments were executed on the Arrow cluster with 50 machines, two 3.2
GHz CPUs and 2GB memory each, running Linux.

3.3 Algorithms

As stated earlier, we seek to evaluate the isolated performance difference pro-
vided by consideration of k-symmetry in the games. As a result, we ran two
versions of SEM-AGG: one without any optimizations, and the other with con-
sideration of equivalent support profiles. No other optimizations have been
employed.

6



4 Experimental Observations

Figure 3: Boxplot comparing basic SEM-AGG (left columns) with SEM-AGG
search on reduced support profile space

Figure 3 shows the run times for 800 game instances where both implemen-
tations finished under 2 hours. We see that for the AdAuction games, which
does not have player symmetry, there are no discernable differences in run time.
Small improvements are noticed in games with symmetry.

It appears that more improvements are observed in instances with longer run
times. For example a larger difference is seen for JobMarketGame distribution,
which has a higher median run time, than the IceCreamGame distribution. This
trend is consistent with the intuition that instances that tend to take longer to
solve have larger, more complex equilibria, and the benefits of reducing the
support profile space becomes more prominent as the support sizes increase.

The cumulative percentages in Figure 4 also suggests modest improvements

7



in run time from eliminating equivalent support profiles. It appears that avoid-
ing equivalent support profiles may be worth implementing if one wants to
minimize run time.

Figure 4: Cumulative distributions. Trials are terminated at 7200 seconds.

5 Limitations and future work

In addition to the basic AGG model with actions as nodes and dependences as
vertices, Jiang et al have also introduced, and continue to introduce, constructs
such as function nodes into the AGG model [2]. Due to time constraints, we have
not made considerations for such constructs for the proposed IRSDS modifica-
tion. We intend to take function nodes into consideration prior to implementing
and testing the proposed IRSDS modification.

As mentioned, the set of games used in our experiments is limited. Therefore
a more comprehensive set of distributions may provide more confidence in our
claims. For example, another set of game distributions of interest are games
that are compact in the Graphical Game format.

8



The inquiring reader may be wondering what is the performance of the
SEM-AGG algorithm when compared to support enumeration on normal form
games, and why no experimental data was provided. Although we predict that
SEM-AGG would enjoy reliable improvements in run time by relying on the
convenience that AGGs provide, currently available experimental data does not
support this claim. The reasons for this unexpected behaviour is still under
investigation. Possible problems may involve mistakes in the SEM-AGG imple-
mentation, mistakes in data analysis, or algorithmic properties of SEM-AGG.

References

[1] N. Bhat and K. Leyton-Brown. Computing nash equilibria of action-graph
games. Uncertainty in Artificial Intelligence (UAI-2004), 2004.

[2] A. Jiang, K. Leyton-Brown, and N. Bhat. Action-graph games. University
of British Columbia Technical Report TR-2008-13, 2008.

[3] M. Kearns, M. Littman, and S. Singh. Graphical models for game the-
ory. Proceedings of the Conference on Uncertainty in Artificial Intelligence
(UAI2001), 2001.

[4] E. Nudelman, J. Wortman, K. Leyton-Brown, and Y. Shoham. Run the
gamut: A comprehensive approach to evaluating game-theoretic algorithms.
AAMAS, 2004.

[5] R. Porter, E. Nudelman, and Y. Shoham. Simple search methods for finding
a nash equilibrium. Games and Economic Behavior, 63(2):642–662, 2008.

[6] D. R. M. Thompson and K. Leyton-Brown. Tractable computational meth-
ods for finding nash equilibria of perfect-information position auctions.
Fourth Workshop on Ad Auctions, 2008.

9


