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Abstract

With the increasing popularity of online collaborative tagging services,
the study of user tagging behavior is of significant interest. A model
of vocabulary evolution is described from the literature, re-interpreted
using game theoretic concepts, and tested via simulation. Refinements
are motivated in view of the nature of collaborative tagging and in light
of recent analyses of real-world collaborative tagging data.

1 Introduction

The idea of applying game theory to the study of language evolution is not new.
In introducing language games [8], Steels described a simple process by which
an uncoordinated population of boundedly-rational agents reach the convention
of assigning common terms to objects. While not formally presented in such
terms, the process he described is similar to the stochastic coordination games
studied in contemporary game theoretic work [6]. However, perhaps because
the restricted interactions assumed in practical implementations do not closely
resemble natural language, this work has not seen wide application to problems
in computational linguistics.

Since the mid-2000s there has been a rise in the popularity of online collab-
orative tagging systems such as Delicious. * Users of these services annotate
web resources using short keywords; the process of tagging a new resource can
be seen as a naming process under a greatly simplified grammar. As such, there
has been a resurgence of interest in the study of language evolution in the con-
text of collaborative tagging. For example, a group of Italian physicists have
been actively investigating the evolution of vocabulary (or semiotic dynamics)
in collaborative tagging systems. Baronchelli et al. motivate a simplified lan-
guage game as being relevant to collaborative tagging and discuss its dynamics,
but do not compare to real tagging data or incorporate any domain-specific
considerations into the model [1]. Meanwhile, Cattuto et al. develop a stochas-
tic model which explains phenomena observed in real tagging data, but do not
explicitly connect their work to game theory [2].

*http://www.delicious.com



This report presents a survey of recent work on agent-based simulation of
semiotic dynamics, with a focus on modeling the collaborative tagging process.
In Section 2, a game theoretic formalism describing emergent social conventions
is introduced. In Section 3, the Naming Game is described and re-interpreted
using these game-theoretic formalisms, and tested via simulation. It is further
refined to model collaborative tagging in Section 4, through examining the user
tagging process and incorporation of results from recent analyses of tag data.
Finally, in Section 5 the results of these investigations are summarized, and
avenues for further research are identified.

Throughout the text, the reader is assumed familiar with fundamental con-
cepts and notations of game theory, set theory, and statistics.

2 Social conventions in stochastic games

In their 1997 paper, Shoham and Tennenholtz [6] introduce a game theoretic
framework for describing the emergence of social conventions and apply it to
a restricted class of games. Their terminology is adopted here, and important
results are summarized. Definition 1 below is reproduced verbatim:

Definition 1 (n-k-g stochastic social game)

An n-k-g stochastic social game consists of a set of n agents, a k-person game g,
and an unbounded sequence of ordered tuples of k agents selected from a uniform
distribution over the n given agents.

Repeated n-k-g stochastic social games can be studied in terms of the com-
mon selection function used by agents to choose actions in each stage game. It
is assumed that there are no extrinsic preferences for particular actions based
on information not encoded into the game itself. Of special interest are settings
in which only limited, local information is available to the an agent; here local
information means restricting to the agent’s past action choices and realized
payoffs.

Highest Cumulative Reward (HCR), in which in which agents simply play
the action that has recently been most profitable, is an example local selection
function introduced by Shoham and Tennenholtz. Despite the fact that it does
not allow agents to reason at all, they establish a variety of results for HCR
in the case of n-2-g stochastic social games, where g is of a restricted class
of symmetric 2 x 2 normal-form games that includes both coordination and
cooperation (prisoner’s dilemma). Ultimately, they show that all n agents will
eventually converge to a stable, rational, pure strategy profile.! When this
occurs, a social convention is said to have emerged.

Definition 2 (social convention)
A social convention is a restriction of all agents to a single strategy profile.

T “Rational” means each agent’s payoff is strictly grater than the associated maxmin value.



The key message is that — in this restricted setting — it is possible even
for information-limited, extremely boundedly-rational agents to reach social
conventions without external coordination. This will not necessarily happen
quickly; indeed, a lower-bound of Q(nlog(n)) game iterations is proven neces-
sary for any local selection function to produce a social convention. Through
simulation it is established that the specific dynamics with which a social con-
vention is reached depend strongly on the particular game played.

In the broader context of games with more than two actions (such as the
games discussed in this paper), a different selection function is introduced. In
External Majority (EM), each agent plays the strategy most commonly observed
in other agents. This rule is called semi-local because in addition to local in-
formation, the agent has access to information about directly-observed second-
party actions. No theoretical results are provided, but a simulation study of EM
on a class of extended coordination games suggests that increasing the number of
actions only sub-logarithmically decreases the probability of a social convention
emerging.

3 Modeling language evolution

Although the underlying mechanisms for modeling language evolution have often
been loosely described as games, they are typically not presented in a manner
consistent with game theoretic conventions. Moreover, there has not been an
effort to update these basic game models in light of the statistical and graph-
theoretic analyses presented in recent studies of semiotic dynamics in social
tagging. As such, the contributions of this work are twofold — first, to provide
formal game-theoretic models of vocabulary evolution; and second, to incorpo-
rate collaborative tagging domain observations into these games. The first of
these goals is addressed in this section.

3.1 A procedural view of language games

Steels [8] introduces the concept of language games with a high-level description
of the interaction process, and in particular does not adopt a game theoretic
perspective. Despite this, a restricted version of the process he describes can be
understood as a stochastic social game. As such, language games are first de-
scribed here in procedural terms (although using more precise notation), before
being simplified and mapped into the framework of Section 2.

Definition 3 (language game setting)

A language game setting consists of sets of agents N, objects O, features F,
and words V. FEach i € N has three associated private mappings — a word
mapping U; : V — p(F), a feature mapping C; : F — p(V), and a success
mapping P; : V x F — Z% — and two distributions over V. —1b; and ¢;. Initially
Ui(v) =0, Ci(f) =0, and P;(v, f) = (0,0) VY (v,f) €V x F. Each o € O has
an associated set of identifying features F, C F'.



An iteration of communication in the particular language game described by
Steels proceeds as follows:

1.
2.

A pair of agents s and h, and one object o, are chosen uniformly at random.

Agent s, the speaker, selects a subset of the object features F; C F,, and
updates word and feature mappings as necessary according to:

Vie{f e FS|C(f)=0}:

Co(£) = Hvs} where vy ~ ¥s(v
ey SUA ] where vt 0

. Starting from V* = (), the speaker constructs a signal to send via the

following selection function:
VfeF;:
Ve=V:U {vf} where vy ~ ¢s(v | Cs, Ps, f)
Ps(’Uf7f> :PS('vaf)"_(l’O)

. Agent h, the hearer, receives this signal; the successfully-communicated

words and associated meanings from the perspective of each agent are:
Vit ={ve V| F,NULv) # 0}
Fh={f € F, | Vg" nCu(f) # 0}
Xs={(v,f) e V;" x F, | f € Uy(v)}
Xy ={(,f) e V5" x Fo | f € Un(v)}

The agents’ success mappings are updated via:

Ps(v, f) = Ps(v, f) + (0,1)  V(v, f) € X7
Py(v,f) = Pu(v, /) + (L,1) (v, f) € X}

If V2" = V2 the communication is deemed a success. Otherwise, the
hearer’s word and feature mappings are updated:

Un(v) = Up(v) U (F\FS") Yo e VAV
Cu(f) = Ca(F)U(VAVS™) Vf € F\F3"

Simulation results suggest that convergence to a social convention occurs in such
language games, and can do so quickly — within a few thousand iterations in
the case of 5 agents and 16 objects. Additionally, the model admits many inter-
esting phenomena observed in real language; for example, both synonymy and
homonymy are observed to arise. Unfortunately, the model also has significant
limitations. First, the game is sufficiently complex that no theoretical analysis



is presented, and is too complex to be directly expressed under the framework
of Section 2. Moreover, the model assumes agents have unlimited memory —
not only do they remember every word-feature association ever encountered,
but they are unable to forget any inappropriate pairings that may have been
made. Finally, communication is largely unidirectional — the speaker receives
no information other than indications of comprehension from the listener.

3.2 The Naming Game

In order to address the practical issues with language games, various simplifica-
tions have been proposed. One relatively recent example is that of Baronchelli
et al. [1]. In their work they consider a significantly restricted language game
instance called the Naming Game. In terms of Definition 3, the restrictions are:

0 = {o} (a single object)
F=F,={f} (a single feature)
V| =% (an unlimited vocabulary)

1 if Ui (’U) = (Z)
0 otherwise

(1 ifveCi(f)
¢i(v ] Ci, f) = { 0 otherwise

(words invented uniformly at random)

o ) = {
(signal chosen arbitrarily from options)

Finally, memory is limited by having agents forget all previous word-feature
associations after each successful communication. Specifically, step 6 of Sec-
tion 3.1 is replaced with the following (in terms of the above simplifications
rather than the general case):

6. If Vsh = V¥ the communication is deemed a success, and both agents’
feature mappings are updated:

Otherwise, the hearer’s feature mappings are updated:
Cu(f) =Cn(fHuVy

These restrictions have the following important implications on the game:
e all signals consist of a single word
e homonymy cannot be modeled as only one feature exists

e at most |N|/2 unique words are created, one by each agent whose first
interaction is as a speaker

e success mappings P, are never used, so are omitted



Baronchelli et al. demonstrate via simulation that this simple process produces
common-terminology social conventions. Moreover, the adoption of convention
is observed to occur in a relatively sudden transition after a long period of com-
munication using a large vocabulary. This qualitative behavior is very similar
to that observed in natural language [5], and in particular is observed to be
consistent with that expected of an urn model [3]. While analytic explanations
for these observations are presented, bounds on the rate of convergence are not
proved. Finally, no alternative models are tested alongside the Naming Game.

3.3 Game theoretic representation of language evolution

Although not introduced in such terms, the Naming Game can be modeled as
an n-2-g stochastic social game with n = |N| agents, where ¢ is a variation of
the coordination game called the comprehension game (to avoid confusion with
the non-game-theoretic language game) with s = n/2:

Definition 4 (comprehension game)

A comprehension game is an asymmetric 2-person game, where player 1 plays
a1 € Ay where |A1| = s, and player 2 plays as € As = p(A1) so that |As| = 2°.
The payoff for both agents is x > 0 if and only if a1 € ag, and it is —x otherwise.

While this game is uninteresting if we assume rational agents with complete
knowledge of the game (player 2 should simply play the action corresponding
to the full set of s actions), interesting behavior can arise if action choices are
constrained by a selection function. The mechanism of Section 3.2 implicitly
defines a semi-local selection function for a comprehension game, here called
Reward Restarted Uniform (RRU):

Definition 5 (RRU for comprehension games)

Under RRU, agent i as player 1 in a comprehension game selects a uniformly-
mized strategy s over all previously-observed actions A} C Ay (or all actions
Ay if AL =0). Agent j as player 2 selects the pure strategy s3 corresponding to
A{ € As. On positive payoff, both agents” memory of all but the realized action
ay is reset; i.e. AL = Al = {a1}.

While this selection function reproduces the Naming Game with s = player 1
and h = player 2, it is not the only possible choice in this setting.* In particular,
both the HCR and EM can be adapted to comprehension games:

Definition 6 (HCR for comprehension games)

Under HCR, agent i as player 1 in a comprehension game selects an action a; €
Ay associated with the highest cumulative payoff, where only payoffs associated
with agent i’s recent actions as player 1, A" C Ay, are counted.

Definition 7 (EM for comprehension games)
Under EM, agent i as player 1 in a comprehension game selects the action

fThe strategy of player 2 cannot be changed without sacrificing the intended interpretation
of the comprehension game, but the strategy of player 1 is not so restricted.



a1 € Ay which is observed the most often in other agents, where all recently
observed actions A} C A; are counted.

In either case, limited memory can be enforced by bounding the size of A% or
A’'. The main difference between HCR and EM is that agents condition on
actions taken when player 1 under HCR, and on observations made when player
2 under EM. The two sources are combined under semi-local HCR:

Definition 8 (semi-local HCR for comprehension games)

Under semi-local HCR, agent i as player 1 in a comprehension game selects an
action a1 € Ay associated with the highest cumulative payoff, where all recently
observed actions Aﬁ C A;q are counted.

In this factored representation, it is not clear whether the observations of Baron-
chelli et al. [1] noted in Section 3.2 are specific to RRU, or are typical of the
collaboration game in general. In order to probe this issue, simulations of com-
prehension games using both RRU and memory limited semi-local HCR were
conducted; the results are summarized in Figure 1. This figure is qualitatively
identical to the reports reported by Baronchelli et al, indicating that RRU is
indeed equivalent to the Naming Game. From this figure it is also clear that
convention emergence occurs for both selection functions, and indeed faster
under semi-local HCR than RRU. This strongly suggests that the underlying
comprehension game, and not the specific selection function, is fundamentally
responsible for these dynamics.

3.4 Beyond single features

Perhaps the most restrictive limitation in modeling language evolution by an
n-2-g stochastic social comprehension game is that only one feature per object
is supported — a carryover from the Naming Game. The original language game
definition does not have this restriction, and it would be useful to provide a sim-
ilarly unrestricted game theoretic model. This might be achieved by extending
current framework to a Bayesian game setting — the speaker’s type determin-
ing which feature a is communicated, and the hearer’s type determining which
feature the signal is interpreted as corresponding to. Clearly, this approach
requires substantial development before being practically useful.

4 Modeling collaborative tagging

Having formally described the Naming Game as a n-2-g stochastic social com-
prehension game with a specific choice of selection function, focus shifts to the
appropriateness of this model for describing collaborative tagging. In this sec-
tion, collaborative tagging is formally described and modeled using language
games. Modifications to the n-2-g stochastic social comprehension game model
are proposed, and a specific selection function is motivated in light of the results
of recent analyses of tag data.



4.1 A procedural view of collaborative tagging

Communication via a collaborative tagging service ¢ regarding a web resource
o with true features F, typically follows the following general procedure, using
the terminology of Section 3.1: §

1. Service ¢ sends signal V! summarizing features F! C F,, using some func-
tion ¢

2. User i maps V! to a set of features F**
3. User i observes o and identifies a set of relevant features F!

4. User i sends signal V! summarizing F! C F,, using some function ¢; which
may depend on F

5. Service t maps V! to a set of features F”’
6. Service t updates F in light of F”’

In this notation, each signal V, is a set of tags, and the resource features F, are
the underlying concepts described by the tags. It thus appears that in principle
tagging can be described by a language game involving pairwise, bidirectional
communication between users and the service. However, a fundamental differ-
ence between this process and all models described so far is that it is centered
— a unique center agent t is involved in each interaction.

4.2 The Naming Game for collaborative tagging

Baronchelli et al. [1] specifically introduce their work as a model appropriate for
understanding trends in collaborative tagging. However, they do not explicitly
describe how their model relates to a typical tagging process such as the one
described here.

As has been discussed, the Naming Game treats the vocabulary used to
describe different objects as independent. It also assumes F, = {f}, so docu-
ments with multiple features can only be modeled by assuming these features
are independent. Finally, it assumes a unidirectional communication between
arbitrarily chosen agents. This last point is fundamentally incompatible with
the tagging process, which involves bidirectional communication between an ar-
bitrary agent and the center. To address this incompatibility, a centered version
of the n-k-g stochastic social game is introduced:

Definition 9 (t-n-k-g centered stochastic social game)

A t-n-k-g centered stochastic social game consists of a set of a central agent t,
n non-center agents, a k-person game g, and an unbounded sequence of ordered
tuples of t and k — 1 agents selected from a uniform distribution over the n
non-center agents.

8In some use cases, step 3 may occur first.



Collaborative tagging can then be seen as a t-n-2-g centered stochastic social
game, where g is a pairwise comprehension game:

Definition 10 (pairwise comprehension game) A pairwise comprehension
game between agents t and j is a sequence of two comprehension games; the first
with © as player 1 and j as player 2, and the second with roles reversed. Each
agent receives payoff equal to the sum of payoffs in the two stage games.

If both agents use RRU, this game is can be interpreted an application of the
Naming Game to collaborative tagging. However, as indicated by the results
of Section 3.3, RRU is not necessarily the best choice of selection function. To
motivate alternatives, it is useful to consider analyses of actual tagging data.

4.3 Statistical models of tag data

In this paper, game theoretic models of emergent conventions corresponding to
vocabulary evolution are described and developed. However, it is not necessary
to model agent interactions in order to describe these equilibria. Indeed, several
studies have instead focused on statistical explanations of patterns observed in
actual collaborative tagging data. In a 2006 paper, Golder and Huberman [4]
present an exploratory analysis of many aspects of the Delicious collaborative
tagging service. Among other observations, they informally observe that the
distribution of document tags is similar to what would be observed in an urn
process [3]. Cattuto et al. [2] report a study with qualitatively similar results,
but also explicitly develop and justify (both theoretically and experimentally)
a probabilistic model of tagging. Their model is memory-limited version of
the Yule-Simon process [7, 9], an urn model like that alluded to by Golder
and Huberman. Their model inspires the memory-limited Yule-Simon (MYS)
selection function for non-center agents:

Definition 11 (MYS for comprehension games)
Under MYS, agent i as player 1 in a comprehension game selects an action
a1 € Ay according to a memory-limited Yule-Simon process:

e with probability p, a1 is chosen randomly from A;

e with probability 1 —p, a position x is sampled with probability proportional
to —— for some parameter 7. The action (A%}), € Al which was zth-most
recently observed is selected, where all recently observed actions A} C Ay
are considered.

The 1 —p case is motivated by the observation that more recent tags are (much)
more likely to be seen and emulated by users. By fitting the parameters p and
7Y Cattuto et al. [2] observed a very good fit between the model’s predictions
and tag distributions observed on documents.

I Typical values are reported to be p = 0.03 and 7 = 40



5 Conclusions

In this work, a simple “Naming Game” describing vocabulary evolution via un-
coordinated agent interactions was reported, and formalized in game theoretic
terms through the introduction of stochastic social comprehension games. In
this formalism, it is clear that the agents’ selection function is a free design
parameter, and a prominent alternative from game theory literature was tested
and shown to exhibit qualitatively similar — and arguably superior — behav-
ior to the implicit original choice. Approaches for applying this framework to
the modeling of collaborative tagging was discussed, and an alternative selec-
tion function for non-central agent behavior was motivated based on previous
analyses of tagging data.

There are at least three intuitive directions for future work. The first in-
volves development of elaborated game theoretic models for language evolution.
One possible such direction, extending stochastic social comprehension games
into a Bayesian game setting, was introduced as a way to enable representa-
tion of multi-featural objects — a particularly relevant goal in the context of
collaborative tagging. However, this direction has not been deeply pursued.

The second possibility is to perform more direct analysis of collaborative
tagging data. In this work, the results of external analyses were considered, but
insight was limited to the conclusions drawn by their respective authors. By
performing first-party analysis, a more detailed understanding of the domain
could be acquired as necessary.

Finally, the third and most interesting direction entails further exploration of
specific game theoretic models for collaborative tagging. For example, although
a data-supported model for users tag choice was proposed, it is still unclear what
constitutes a good strategy for the center. Given the users’ action dependence
on communications from the center, the practical implications of this choice are
significant. In a sense, this direction subsumes the previous two; both more
capable models and a better understanding of the target domain are required
to make meaningful progress.
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Figure 1: Communicative success rate evolution for a comprehension game with
500 agents. Curves represent median and quartile succcess rates over 10 simu-
lations, measured in a 100-iteration sliding window. Blue curves correspond to
5-iteration-memory-limited semi-local HCR; black curves to RRU.
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