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1 Introduction

In recent years, online advertising has become a huge market. It is a major
source of income for such companies as Google, Yahoo!, or Microsoft. Accord-
ingly, these companies are interested in maximizing the revenues they can get
by selling advertising spots, and a lot of research has been done on this topic.

Edelman at al. [6] provide a short outline of the evolution of Internet adver-
tising. In the early days of Internet advertising, ads were sold per impression.
An advertiser would pay once to show their ad a fixed number of times.

In 1997, Overture (later acquired by Yahoo!) developed a new model. They
would auction off several ad spots shown on a search results page for a particular
keyword. Advertisers submitted bids for a number of different keywords, and
the spots would be allocated according to the bids — highest bidder for the
particular keyword searched would receive the first (best) spot, second highest
would receive the second-best spot, and so on. Advertisers would also pay the
amount of their bid every time their ad was clicked on.

This model had a huge advantage over the earlier per-impression models,
since now advertisers could target their ads. A user who searched for a “honda”
and clicked on a car dealership’s ad is on average more valuable to the dealership
than a user who simply saw their ad on some page. The particular auction design
used had its problems however. As we will see, this “Generalized First-Price
auction” is unstable, and the search engine’s revenues are lower than under
other models.

Google came up with another keywords auction system (AdWords) in 2002.
Instead of paying the amount of their own bid, advertisers would now pay the
next highest bidder’s amount plus a small constant. We will see that this “Gen-
eralized Second-Price” auction allows higher revenues and more stable bids.
Indeed, a number of equilibria is possible under some conditions.

We study the auction for a single keyword. Note that in real applications,
the bidders have limited budgets and allocating these budgets across different
keywords they bid on to maximize revenue is in itself an interesting problem
[9, 10]. In the same way, the advertisers will attempt to optimize their bids under



the constraints to get the best return on investment [3, 4]. We will assume that
the budgets are unlimited.

Some of other interesting problems to consider are how the ad spot location
on the web page affects the probability that a user will click on it; whether or
not other displayed ads affect the probability of clicking on some particular ad;
how much the contents of the ad itself affect its probability of being clicked on
(the Click-Through Rate, CTR); and how to estimate these probabilities. These
problems are beyond the scope of this survey.

2 Model

We have N advertisers and M ad slots — locations where the ads can be placed
on the search results web page. In the unweighted model [6], we assume that
the only thing affecting the probability of an ad being clicked on is its position
on the page. The number of clicks per second received by an ad in slot i (the
Click-Through Rate) is ¢;. We order the slots so that if ¢ < j then ¢; > ¢;. In
a weighted model, CTR will generally also depend on which advertiser got the
slot. CTR in [12, 1] is assumed to be separable; that is ¢;; = x;¢; where ¢; is the
component of the CTR that is only affected by the slot’s position on the page,
and z; is the component that is associated with the bidder, but is independent
of the position.

Each advertiser has their own value for a click, and we call the j-th adver-
tiser’s value v;. Thus, the j-th advertiser’s payoff if his ad is in position 7 is
in general ¢;;(v; — p;), where p; is his payment per click to the search engine
under the auction payment rules.

An auction is modelled as follows: at any point in time, an advertiser can
submit a bid. When the keyword is searched for, only advertisers’ most recently
submitted bids are considered. We call the ¢-th advertiser’s current bid b;. Then
the advertiser with the highest bid gets the first (best) spot, the second-highest
bidder gets the second spot, and so on; though other ranking functions are
possible, e.g. [1, 7] (in particular, this is not the function Google uses). The
bidders are also made to pay according to the particular auction payment rules.

3 Generalized first-price auction

Under the GFP rules (used by Overture/Yahoo! from 1997 to 2002 [6, 11]), the
bidders pay the amount of their bids, that is p; = b;. Consider an example with
two slots and three bidders. Suppose that ¢; = 10 and ¢ = 5.

Note that this auction is not truthful - if everyone bid their true values, each
bidder would gain by reducing their own bid to just above the next highest.
Also note that this auction exhibits cycling behaviours [2]. Suppose the bids
are as above. Eventually, Bob will notice that he doesn’t have to pay more than
3 to stay in the same spot, and will reduce his bid. Alice will likewise reduce
her bid to 4. Now Bob has to pay only 5 to get into the first spot. Then Alice



Table 1: GFP example
Advertiser wv; b; Slot ¢ pic;  Total payoff

Alice 50 40 1 10 400 100
Bob 20 19 2 5 95 5
Charlie 2 2 None 0 0 0

will increase her bid to 6, and so on.

Note that in these bidding wars, all bids will stay close to the lowest bid
necessary to get the last spot. Thus the search engine’s revenue will never get
too high. The other loss is the cost to the advertisers, who now have to invest
into designing effective bidding systems (especially if the bids are allowed to
change very often) to have any hope of getting a reasonable ad spot.

4 Generalized second-price auction

To solve this problem, a new mechanism was adopted by Google in 2002 [6]. In
GSP, the bidders pay the amount of the next highest bid (in practice, a small
constant is usually added, e.g. 1 cent). Using the above example,

Table 2: GSP example
Advertiser wv; b; Slot ¢; pic;  Total payoff

Alice 50 40 1 10 190 310
Bob 40 19 2 5 10 105
Charlie 2 2 None 0 0 0

Note that this auction is also not truthful. Suppose everyone bids their true
value:

Table 3: GSP example - true bids
Advertiser wv; b; Slot ¢ pijc;  Total payoff

Alice 50 50 1 10 400 100
Bob 40 40 2 5 10 190
Charlie 2 2 None 0 0 0




Now Alice could reduce her bid to 3 and get a higher payoff:

Table 4: GSP example - Alice’s strategy

Advertiser wv; b; Slot ¢ pijc;  Total payoff

Alice 50 3 2 5 10 240
Bob 40 40 1 10 30 370
Charlie 2 2 None 0 0 0

GSP auction was researched extensively [6, 11, 8, 12]. In certain ways, it
behaves like VCG. VCG is used a lot in the following discussion, to let’s consider
it explicitly. Under VCG, the allocation rules are the same as in GSP, but each
bidder j would be made to pay the sum of (¢;—1 — ¢;)b; for each position i below
him - since that bidder would get the spot i — 1 if not for the bidder j. (Bidders
in higher positions are not affected). Here’s the same example with payoffs
under VCG, assuming truth-telling (since it’s a dominant strategy in VCG):

Table 5: VCG payoffs
Advertiser wv; b; Slot ¢ p;je;  Total payoff

Alice 50 50 1 10 210 290
Bob 40 40 2 5 10 190
Charlie 2 2 None 0 0 0

Note that the advertisers’ payments are smaller in this case than they were
under the GSP rules. It’s easy to show by induction that if the bids are the
same, each bidder’s GSP payment is at least as large than their VCG payment.
For the last bidder who gets a slot the two payments are the same, and for any
smaller ¢ we have

cipy ©¢ = cip1pl 99 = (¢i — civ1)biv1 < €ibig1 — cipabive = ipi — CipaPit

This is a justification (though weak) for using GSP, since the revenues to
the search engine are guaranteed to be at least as large as in VCG.

We now consider a special kind of equilibrium, known as a “locally envy-free
equilibrium” [6]. In this equilibrium, no bidder will want to swap bids with the
bidder one position higher.

Consider the following strategy profile. Assume that if ¢ < j then v; > v;.
Let by = vy and for ¢ > 1, b; = pnylG, that is, the payment per click of bidder
i—1 under VCG if all advertisers bid truthfully. A result proven in [6] states that
this strategy profile is a locally envy-free equilibrium; each advertiser’s position
and payment are the same as they would be in the equilibrium of VCG; and in
any other locally envy-free equilibrium, the revenue of the search engine is at
least as large as under this profile.



Using our example,

Table 6: A locally envy-free equilibrium

Advertiser wv; b; Slot ¢ p;c;  Total payoff

Alice 50 50 1 10 210 290
Bob 40 21 2 5 10 190
Charlie 2 2 None 0 0 0

This result explains what happens if all bidders converge to the equilibrium
strategy profile, but does not explain how they get here. The main result of
[6] answers this question. It considers a generalized English (or “Japanese”)
auction which is analogous to GSP. The allocation rules are identical to GSP.
The auction itself is run as follows: the price is continuously raised, and bidders
can drop out at any time. Once they drop out, they cannot go back in and their
bid is set to the current price. The strategy of bidder 7 can be described with a
function p;(k, b, v;), where p; is the price at which he drops out; & is the number
of other bidders left; and b is the bidding history of the bidders who dropped
out before him. The theorem states that if p; is continuous in v;, there exists a
unique ex-post perfect Bayesian equilibrium of this auction. In particular, each
bidder i drops out when p;(k, b, v;) = v; — C:fl (vi — bg41). In this equilibrium,
the positions and payoffs are exactly the same as in the equilibrium of VCG.
Since it’s ex-post, the strategy of each advertiser wouldn’t change if they knew
exactly what the other advertisers’ strategies were.

More general models are possible. Varian [12] analyzes the Weighted GSP
where ¢; are replaced with ¢;; = zjc;, where z; is the CTR component that
results if the j-th advertiser takes the slot. He showed that in a globally envy-
free equilibrium (that is, no bidder would want to swap bids with any other
bidder) this more general GSP is also efficient and has revenue at least as high
as VCG.

A natural question that arises is how often do these efficient equilibria occur.
Thompson and Leyton-Brown answer this question in [11]. It was found that in
practice, Weighted GSP outperforms both GSP and GFP in terms of efficiency,
but is “a less clear winner in terms of revenue” [11].

5 Truthful mechanisms

It’s often desirable to have a truthful mechanism. It would guarantee that no
cycling behaviours would occur, as was the case with GFP. It also means there
are no losses associated with investing into developing best strategies by adver-
tisers, and corresponding costs to the search engine (i.e. prevention mechanisms
that include not allowing to bid too often and restrictions on “bidding robots”).

A VCG auction would seem as a natural choice; however, Aggarwal et al. [1]
explain why VCG doesn’t apply in the case when the ranking function orders
bidders not by their bids, but by expected revenue (the ranking used by Google),



as well as expose some other problems with VCG. Apart from these theoretical
issues, it’s unknown how well a VCG auction would work in practice, since it’s
harder for the customers to understand the payment rules than those of a GSP
auction.

Aggarwal et al. instead present a simple truthful auction (the laddered auc-
tion) which is the unique auction for the general class of ranking functions.
They also show that there’s a pure-strategy Nash equilibrium for GSP that has
exactly the same revenue as the laddered auction.

In the laddered auction, the bidder ¢ in position j pays:

1. For the number of clicks that would be received in position j + 1, same
price as would be paid in position j + 1.

2. For the additional clicks (the advantage of being in position j), the amount
equal to the minimum bid required to stay in position j.

6 Conclusion

Ad keyword auctions are an interesting example of mechanisms that appeared
in the industry first and were later studied and found to have good theoretical
justification. Currently, GSP is the most widely used mechanism. While it’s
not truthful and it’s not clear how often equilibria are reached in practice,
empirically it’s a good alternative to some other mechanisms, like GFP and
VCG.

In practical applications, it’s important to prevent non-truthful strategies [5].
This reduces the costs for everyone involved. That is why a truthful auction is
desired in general. Even though GSP is not truthful, it was found to have many
properties which make it a good choice.

On the other hand, it’s not clear how a theoretically “better” but a more
complicated mechanism would do in practice. Auction rules which are hard to
understand might have a negative effect on the revenues. This might be another
reason the simple GSP is so successful.
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