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Introduction

The normal form game representation does not incorporate
any notion of sequence, or time, of the actions of the players

The extensive form is an alternative representation that makes
the temporal structure explicit.

Two variants:
perfect information extensive-form games

a “game tree” consisting of choice nodes and terminal nodes
choice nodes labeled with players, and each outgoing edge
labeled with an action for that player
terminal nodes labeled with utilities

imperfect-information extensive-form games

we’ll get to this today
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Pure Strategies

Overall, a pure strategy for a player in a perfect-information
game is a complete specification of which deterministic action
to take at every node belonging to that player.

Definition

Let G = (N,A,H,Z, χ, ρ, σ, u) be a perfect-information
extensive-form game. Then the pure strategies of player i consist
of the cross product

×
h∈H,ρ(h)=i

χ(h)

Using this definition, we recover the old definitions of mixed
strategies, best response, Nash equilibrium, . . .
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Induced Normal Form

we can “convert” an extensive-form game into normal form

5.1 Perfect-information extensive-form games 109
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Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are

Multi Agent Systems, draft of September 19, 2006

CE CF DE DF
AG 3, 8 3, 8 8, 3 8, 3
AH 3, 8 3, 8 8, 3 8, 3
BG 5, 5 2, 10 5, 5 2, 10
BH 5, 5 1, 0 5, 5 1, 0
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Subgame Perfection

Define subgame of G rooted at h:

the restriction of G to the descendents of H.

Define set of subgames of G:

subgames of G rooted at nodes in G

s is a subgame perfect equilibrium of G iff for any subgame
G′ of G, the restriction of s to G′ is a Nash equilibrium of G′

Notes:

since G is its own subgame, every SPE is a NE.
this definition rules out “non-credible threats”
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Centipede Game

118 5 Reasoning and Computing with the Extensive Form
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Figure 5.9 The centipede game

place. In other words, you have reached a state to which your analysis has given a
probability of zero. How should you amend your beliefs and course of action based
on this measure-zero event? It turns out this seemingly small inconvenience actually
raises a fundamental problem in game theory. We will not develop the subject further
here, but let us only mention that there exist different accounts of this situation, and
they depend on the probabilistic assumptions made, on what is common knowledge (in
particular, whether there is common knowledge of rationality), and on exactly how one
revises one’s beliefs in the face of measure zero events. Thelast question is intimately
related to the subject of belief revision discussed in Chapter 2.

5.2 Imperfect-information extensive-form games

Up to this point, in our discussion of extensive-form games we have allowed players to
specify the action that they would take at every choice node of the game. This implies
that players know the node they are in, and—recalling that in such games we equate
nodes with the histories that led to them—all the prior choices, including those of other
agents. For this reason we have called theseperfect-information games.

We might not always want to make such a strong assumption about our players and
our environment. In many situations we may want to model agents needing to act with
partial or no knowledge of the actions taken by others, or even agents with limited
memory of their own past actions. The sequencing of choices allows us to represent
such ignorance to a limited degree; an “earlier” choice might be interpreted as a choice
made without knowing the “later” choices. However, we cannot represent two choices
made in the same play of the game in mutual ignorance of each other. The normal
form, of course, is optimized for such modelling.

5.2.1 Definition

Imperfect-informationgames in extensive form address this limitation. An imperfect-
information game is an extensive-form game in which each player’s choice nodes are
partitioned intoinformation sets; intuitively, if two choice nodes are in the same in-information sets
formation set then the agent cannot distinguish between them. From the technical
point of view, imperfect-information games are obtained byoverlaying a partition
structure, as defined in Chapter 1 in connection with models of knowledge, over a
perfect-information game.

Definition 5.2.1 An imperfect-information game(in extensive form) is a tupleimperfect-
information
game

(N,A,H,Z, χ, ρ, σ, u, I), where

c©Shoham and Leyton-Brown, 2006

Play this as a fun game...
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Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt
these as one moves up the tree

124 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

good news: not only are we guaranteed to find a subgame-perfect equilibrium (rather
than possibly finding a Nash equilibrium that involves non-credible threats) but also
this procedure is computationally simple. In particular, it can be implemented as a
single depth-first traversal of the game tree, and thus requires time linear in the size
of the game representation. Recall in contrast that the bestknown methods for finding
Nash equilibria of general games require time exponential in the size of the normal
form; remember as well that the induced normal form of an extensive-form game is
exponentially larger than the original representation.

function BACKWARD INDUCTION (nodeh) returns u(h)
if h ∈ Z then

return u(h) // h is a terminal node

best util← −∞
forall a ∈ χ(h) do

util at child←BACKWARD INDUCTION(σ(h, a))
if util at childρ(h) > best utilρ(h) then

best util← util at child

return best util

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash equi-
librium of a perfect-information extensive-form game.

The algorithm BACKWARD INDUCTION is described in Figure 5.6. The variable
util at child is a vector denoting the utility for each player at the child node;util at childρ(h)

denotes the element of this vector corresponding to the utility for player ρ(h) (the
player who gets to move at nodeh). Similarly best util is a vector giving utilities for
each player.

Observe that this procedure does not return an equilibrium strategy for each of the
n players, but rather describes how to label each node with a vector ofn real numbers.
This labeling can be seen as an extension of the game’s utility function to the non-
terminal nodesH . The players’ equilibrium strategies follow straightforwardly from
this extended utility function: every time a given playeri has the opportunity to act
at a given nodeh ∈ H (that is,ρ(h) = i), that player will choose an actionai ∈
χ(h) that solvesarg maxai∈χ(h) ui(σ(ai, h)). These strategies can also be returned by
BACKWARD INDUCTION given some extra bookkeeping.

In general in this booklet we do not address computational issues, so this example
could be misleading without additional explanation. Whilethe procedure demonstrates
that in principle a sample SPE is effectively computable, inpractice the game trees
are never enumerated in advance and available for backward induction. For example,
the extensive-form representation of chess has around10150 nodes, which is vastly
too large to represent explicitly. For such games it is more common to discuss the
size of the game tree in terms of the average branching factorb (the average number
of actions which are possible at each node) and a maximum depth m (the maximum
number of sequential actions). A procedure which requires time linear in the size of
the representation thus expandsO(bm) nodes. Nevertheless, we can unfortunately do
no better than this on arbitrary perfect-information games.

c© Shoham and Leyton-Brown, 2008

util at child is a vector denoting the utility for each player

the procedure doesn’t return an equilibrium strategy, but rather
labels each node with a vector of real numbers.

This labeling can be seen as an extension of the game’s utility
function to the non-terminal nodes
The equilibrium strategies: take the best action at each node.

Extensive Form Games: Backward Induction and Imperfect Information Games Lecture 10, Slide 9



Recap Backward Induction Imperfect-Information Extensive-Form Games Perfect Recall

Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt
these as one moves up the tree

124 5 Games with Sequential Actions: Reasoning and Computing with the Extensive Form

good news: not only are we guaranteed to find a subgame-perfect equilibrium (rather
than possibly finding a Nash equilibrium that involves non-credible threats) but also
this procedure is computationally simple. In particular, it can be implemented as a
single depth-first traversal of the game tree, and thus requires time linear in the size
of the game representation. Recall in contrast that the bestknown methods for finding
Nash equilibria of general games require time exponential in the size of the normal
form; remember as well that the induced normal form of an extensive-form game is
exponentially larger than the original representation.

function BACKWARD INDUCTION (nodeh) returns u(h)
if h ∈ Z then

return u(h) // h is a terminal node

best util← −∞
forall a ∈ χ(h) do

util at child←BACKWARD INDUCTION(σ(h, a))
if util at childρ(h) > best utilρ(h) then

best util← util at child

return best util

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash equi-
librium of a perfect-information extensive-form game.

The algorithm BACKWARD INDUCTION is described in Figure 5.6. The variable
util at child is a vector denoting the utility for each player at the child node;util at childρ(h)

denotes the element of this vector corresponding to the utility for player ρ(h) (the
player who gets to move at nodeh). Similarly best util is a vector giving utilities for
each player.

Observe that this procedure does not return an equilibrium strategy for each of the
n players, but rather describes how to label each node with a vector ofn real numbers.
This labeling can be seen as an extension of the game’s utility function to the non-
terminal nodesH . The players’ equilibrium strategies follow straightforwardly from
this extended utility function: every time a given playeri has the opportunity to act
at a given nodeh ∈ H (that is,ρ(h) = i), that player will choose an actionai ∈
χ(h) that solvesarg maxai∈χ(h) ui(σ(ai, h)). These strategies can also be returned by
BACKWARD INDUCTION given some extra bookkeeping.

In general in this booklet we do not address computational issues, so this example
could be misleading without additional explanation. Whilethe procedure demonstrates
that in principle a sample SPE is effectively computable, inpractice the game trees
are never enumerated in advance and available for backward induction. For example,
the extensive-form representation of chess has around10150 nodes, which is vastly
too large to represent explicitly. For such games it is more common to discuss the
size of the game tree in terms of the average branching factorb (the average number
of actions which are possible at each node) and a maximum depth m (the maximum
number of sequential actions). A procedure which requires time linear in the size of
the representation thus expandsO(bm) nodes. Nevertheless, we can unfortunately do
no better than this on arbitrary perfect-information games.

c© Shoham and Leyton-Brown, 2008

For zero-sum games, BackwardInduction has another name:
the minimax algorithm.

Here it’s enough to store one number per node.
It’s possible to speed things up by pruning nodes that will
never be reached in play: “alpha-beta pruning”.
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Backward Induction
118 5 Reasoning and Computing with the Extensive Form
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Figure 5.9 The centipede game

place. In other words, you have reached a state to which your analysis has given a
probability of zero. How should you amend your beliefs and course of action based
on this measure-zero event? It turns out this seemingly small inconvenience actually
raises a fundamental problem in game theory. We will not develop the subject further
here, but let us only mention that there exist different accounts of this situation, and
they depend on the probabilistic assumptions made, on what is common knowledge (in
particular, whether there is common knowledge of rationality), and on exactly how one
revises one’s beliefs in the face of measure zero events. Thelast question is intimately
related to the subject of belief revision discussed in Chapter 2.
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such ignorance to a limited degree; an “earlier” choice might be interpreted as a choice
made without knowing the “later” choices. However, we cannot represent two choices
made in the same play of the game in mutual ignorance of each other. The normal
form, of course, is optimized for such modelling.
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Imperfect-informationgames in extensive form address this limitation. An imperfect-
information game is an extensive-form game in which each player’s choice nodes are
partitioned intoinformation sets; intuitively, if two choice nodes are in the same in-information sets
formation set then the agent cannot distinguish between them. From the technical
point of view, imperfect-information games are obtained byoverlaying a partition
structure, as defined in Chapter 1 in connection with models of knowledge, over a
perfect-information game.

Definition 5.2.1 An imperfect-information game(in extensive form) is a tupleimperfect-
information
game

(N,A,H,Z, χ, ρ, σ, u, I), where

c©Shoham and Leyton-Brown, 2006

What happens when we use this procedure on Centipede?
In the only equilibrium, player 1 goes down in the first move.
However, this outcome is Pareto-dominated by all but one
other outcome.

Two considerations:
practical: human subjects don’t go down right away
theoretical: what should you do as player 2 if player 1 doesn’t
go down?

SPE analysis says to go down. However, that same analysis
says that P1 would already have gone down. How do you
update your beliefs upon observation of a measure zero event?
but if player 1 knows that you’ll do something else, it is
rational for him not to go down anymore... a paradox
there’s a whole literature on this question
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Intro

Up to this point, in our discussion of extensive-form games we
have allowed players to specify the action that they would
take at every choice node of the game.

This implies that players know the node they are in and all the
prior choices, including those of other agents.

We may want to model agents needing to act with partial or
no knowledge of the actions taken by others, or even
themselves.

This is possible using imperfect information extensive-form
games.

each player’s choice nodes are partitioned into information sets
if two choice nodes are in the same information set then the
agent cannot distinguish between them.
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Formal definition

Definition

An imperfect-information game (in extensive form) is a tuple
(N,A,H,Z, χ, ρ, σ, u, I), where

(N,A,H,Z, χ, ρ, σ, u) is a perfect-information extensive-form
game, and

I = (I1, . . . , In), where Ii = (Ii,1, . . . , Ii,ki
) is an equivalence

relation on (that is, a partition of) {h ∈ H : ρ(h) = i} with
the property that χ(h) = χ(h′) and ρ(h) = ρ(h′) whenever
there exists a j for which h ∈ Ii,j and h′ ∈ Ii,j .
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Example

5.2 Imperfect-information extensive-form games 119

• (N,A,H,Z, χ, ρ, σ, u) is a perfect-information extensive-form game, and

• I = (I1, . . . , In), whereIi is an equivalence relation on (that is, a partition of)
{h ∈ H : ρ(h) = i} with the property thatχ(h) = χ(h′) wheneverh andh′ are in
the same equivalence classIi.

Note that in order for the choice nodes to be truly indistinguishable, we require that
the set of actions at each choice node in an information set bethe same (otherwise, the
player would be able to distinguish the nodes). Thus, ifI ∈ Ii is an equivalence class,
we can unambiguously use the notationχ(I) to denote the set of actions available to
playeri at any node in information setI.
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Figure 5.10 An imperfect-information game.

Consider the imperfect-information extensive-form game shown in Figure 5.10. In
this game, player 1 has two information sets: the set including the top choice node, and
the set including the bottom choice nodes. Note that the two bottom choice nodes in
the second information set have the same set of possible actions. We can regard player
1 as not knowing whether player 2 choseA orB when she makes her choice between
ℓ andr.

5.2.2 Strategies and equilibria

A pure strategy for an agent in an imperfect-information game selects one of the avail-
able actions in each information set of that agent:

Definition 5.2.2 Given an imperfect-information game as above, a pure strategy for
agenti with information setsIi,1, . . . , Ii,k is a vector ofa1, . . . , ak such thataj ∈
χ(Ii,j).

Thus perfect-information games can be thought of as a special case of imperfect-
information games, in which every equivalence class of eachpartition is a singleton.

Consider again the Prisoner’s Dilemma game, shown as a normal form game in
Figure 3.2. An equivalent imperfect-information game in extensive form is given in
Figure 5.11.

Note that we could have chosen to make player 2 choose first andplayer 1 choose
second.

Multi Agent Systems, draft of September 19, 2006

What are the equivalence classes for each player?
What are the pure strategies for each player?

choice of an action in each equivalence class.

Formally, the pure strategies of player i consist of the cross
product ×Ii,j∈Ii χ(Ii,j).
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product ×Ii,j∈Ii χ(Ii,j).
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Normal-form games

We can represent any normal form game.

120 5 Reasoning and Computing with the Extensive Form
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Figure 5.11 The Prisoner’s Dilemma game in extensive form.

Recall that perfect-information games were not expressiveenough to capture the
Prisoner’s Dilemma game and many other ones. In contrast, asis obvious from this ex-
ample, any normal-form game can be trivially transformed into an equivalent imperfect-
information game. However, this example is also special in that the Prisoner’s Dilemma
is a game with a dominant strategy solution, and thus in particular a pure-strategy Nash
equilibrium. This is not true in general for imperfect-information games. To be precise
about the equivalence between a normal form game and its extensive-form image we
must consider mixed strategies, and this is where we encounter a new subtlety.

As we did for perfect-information games, we can define the normal form game cor-
responding to any given imperfect-information game; this normal game is again de-
fined by enumerating the pure strategies of each agent. Now, we define the set of
mixed strategies of an imperfect-information game as simply the set of mixed strate-
gies in its image normal form game; in the same way, we can alsodefine the set of
Nash equilibria.4 However, we can also define the set ofbehavioral strategiesin thebehavioral

strategy extensive-form game. These are the strategies in which eachagent’s (potentially prob-
abilistic) choice at each node is made independently of his choices at other nodes. The
difference is substantive, and we illustrate it in the special case of perfect-information
games. For example, consider the game of Figure 5.2. A strategy for player 1 that
selectsA with probability .5 andG with probability .3 is a behavioral strategy. In
contrast, the mixed strategy(.6(A,G), .4(B,H)) is not a behavioral strategy for that
player, since the choices made by him at the two nodes are not independent (in fact,
they are perfectly correlated).

In general, the expressive power of behavioral strategies and the expressive power
of mixed strategies are non-comparable; in some games thereare outcomes that are
achieved via mixed strategies but not any behavioral strategies, and in some games it is
the other way around.

Consider for example the game in Figure 5.12. In this game, when considering
mixed strategies (but not behavioral strategies), R is a strictly dominant strategy for
agent 1, D is agent 2’s strict best response, and thus (R,D) isthe unique Nash equi-

4. Note that we have defined two transformations – one from any normal form game to an imperfect-
information game, and one in the other direction. However the first transformation is not one to one, and so
if we transform a normal form game to an extensive-form one and then back to normal form, we will not in
general get back the same game we started out with. However, we will get a game with identical strategy
spaces and equilibria.

c©Shoham and Leyton-Brown, 2006

Note that it would also be the same if we put player 2 at the
root node.
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Induced Normal Form

Same as before: enumerate pure strategies for all agents

Mixed strategies are just mixtures over the pure strategies as
before.

Nash equilibria are also preserved.

Note that we’ve now defined both mapping from NF games to
IIEF and a mapping from IIEF to NF.

what happens if we apply each mapping in turn?
we might not end up with the same game, but we do get one
with the same strategy spaces and equilibria.
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Randomized Strategies

It turns out there are two meaningfully different kinds of
randomized strategies in imperfect information extensive form
games

mixed strategies
behavioral strategies

Mixed strategy: randomize over pure strategies

Behavioral strategy: independent coin toss every time an
information set is encountered
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Figure 5.1 The Sharing game.

Notice that the definition contains a subtlety. An agent’s strategy requires a decision
at each choice node, regardless of whether or not it is possible to reach that node given
the other choice nodes. In the Sharing game above the situation is straightforward—
player 1 has three pure strategies, and player 2 has eight (why?). But now consider the
game shown in Figure 5.2.
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(2,10) (1,0)
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Figure 5.2 A perfect-information game in extensive form.

In order to define a complete strategy for this game, each of the players must choose
an action at each of his two choice nodes. Thus we can enumerate the pure strategies
of the players as follows.

S1 = {(A,G), (A,H), (B,G), (B,H)}
S2 = {(C,E), (C,F ), (D,E), (D,F )}

It is important to note that we have to include the strategies(A,G) and(A,H), even
though onceA is chosen theG-versus-H choice is moot.

The definition of best response and Nash equilibria in this game are exactly as they
are in for normal form games. Indeed, this example illustrates how every perfect-
information game can be converted to an equivalent normal form game. For example,
the perfect-information game of Figure 5.2 can be convertedinto the normal form im-
age of the game, shown in Figure 5.3. Clearly, the strategy spaces of the two games are
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Give an example of a behavioral strategy:

A with probability .5 and G with probability .3
Give an example of a mixed strategy that is not a behavioral
strategy:

(.6(A,G), .4(B,H)) (why not?)

In this game every behavioral strategy corresponds to a mixed
strategy...
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Imagine that player 1 sends two proxies to the game with the same
strategies. When one arrives, he doesn’t know if the other has
arrived before him, or if he’s the first one.

5.2 Imperfect-information extensive-form games 121

s
s s

1

2

����������

HHHHHHHHHH
�

�
�

�
�

T
T
T
T
T

�
�

�
�

�

T
T
T
T
T

L R

U D
L R

1,0 100,100 5,1 2,2

Figure 5.12 A game with imperfect recall

librium. Note in particular that in a mixed strategy, agent 1decides probabilistically
whether to play L or R in his information set, but once he decides he plays that pure
strategy consistently. Thus the payoff of 100 is irrelevantin the context of mixed strate-
gies. On the other hand, with behavioral strategies agent 1 gets to randomize afresh
each time he finds himself in the information set. Noting thatthe pure strategy D is
weakly dominant for agent 2 (and in fact is the unique best response to all strategies of
agent 1 other than the pure strategy L), agent 1 computes the best response to D as fol-
lows. If he uses the behavioral strategy(p, 1− p) (that is, choosing L with probability
p each time he finds himself in the information set), his expected payoff is

1 ∗ p2 + 100 ∗ p(1− p) + 2 ∗ (1− p)

The expression simplifies to−99p2 + 98p + 2, whose maximum is obtained atp =
98/198. Thus (R,D) =((0, 1), (0, 1)) is no longer an equilibrium in behavioral strate-
gies, and instead we get the equilibrium((98/198, 100/198), (0, 1)).

There is, however, a broad class of imperfect-information games in which the ex-
pressive power of mixed and behavioral strategies coincides. This is the class of games
of perfect recall. Intuitively speaking, in these games no player forgets anyinformation
he knew about moves made so far; in particular, he remembers precisely all his own
moves. Formally:

Definition 5.2.3 Playeri hasperfect recallin an imperfect-information gameG if for perfect recall
any two nodesh, h′ that are in the same information set for playeri, for any path
h0, a0, h1, a1, h2, . . . , hn, an, h from the root of the game toh (where thehj are deci-
sion nodes and theaj are actions) and any pathh0, a

′
0, h

′
1, a

′
1, h

′
2, . . . , h

′
m, a

′
m, h

′ from
the root toh′ it must be the case that:

1. n = m

2. For all 0 ≤ j ≤ n, hj andh′j are in the same equivalence class for playeri.

3. For all 0 ≤ j ≤ n, if ρ(hj) = i (that is,hj is a decision node of playeri), then
aj = a′j .
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What is the space of pure strategies in this game?

1: (L,R); 2: (U,D)
What is the mixed strategy equilibrium?

Observe that D is dominant for 2. R,D is better for 1 than
L,D, so R,D is an equilibrium.
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What is the space of pure strategies in this game?

1: (L,R); 2: (U,D)

What is the mixed strategy equilibrium?

Observe that D is dominant for 2. R,D is better for 1 than
L,D, so R,D is an equilibrium.
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librium. Note in particular that in a mixed strategy, agent 1decides probabilistically
whether to play L or R in his information set, but once he decides he plays that pure
strategy consistently. Thus the payoff of 100 is irrelevantin the context of mixed strate-
gies. On the other hand, with behavioral strategies agent 1 gets to randomize afresh
each time he finds himself in the information set. Noting thatthe pure strategy D is
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lows. If he uses the behavioral strategy(p, 1− p) (that is, choosing L with probability
p each time he finds himself in the information set), his expected payoff is
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The expression simplifies to−99p2 + 98p + 2, whose maximum is obtained atp =
98/198. Thus (R,D) =((0, 1), (0, 1)) is no longer an equilibrium in behavioral strate-
gies, and instead we get the equilibrium((98/198, 100/198), (0, 1)).

There is, however, a broad class of imperfect-information games in which the ex-
pressive power of mixed and behavioral strategies coincides. This is the class of games
of perfect recall. Intuitively speaking, in these games no player forgets anyinformation
he knew about moves made so far; in particular, he remembers precisely all his own
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′ from
the root toh′ it must be the case that:
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2. For all 0 ≤ j ≤ n, hj andh′j are in the same equivalence class for playeri.

3. For all 0 ≤ j ≤ n, if ρ(hj) = i (that is,hj is a decision node of playeri), then
aj = a′j .
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What is an equilibrium in behavioral strategies?

again, D strongly dominant for 2
if 1 uses the behavioural strategy (p, 1− p), his expected
utility is 1 ∗ p2 + 100 ∗ p(1− p) + 2 ∗ (1− p)
simplifies to −99p2 + 98p+ 2
maximum at p = 98/198
thus equilibrium is (98/198, 100/198), (0, 1)

Thus, we can have behavioral strategies that are different
from mixed strategies.
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There is, however, a broad class of imperfect-information games in which the ex-
pressive power of mixed and behavioral strategies coincides. This is the class of games
of perfect recall. Intuitively speaking, in these games no player forgets anyinformation
he knew about moves made so far; in particular, he remembers precisely all his own
moves. Formally:

Definition 5.2.3 Playeri hasperfect recallin an imperfect-information gameG if for perfect recall
any two nodesh, h′ that are in the same information set for playeri, for any path
h0, a0, h1, a1, h2, . . . , hn, an, h from the root of the game toh (where thehj are deci-
sion nodes and theaj are actions) and any pathh0, a

′
0, h

′
1, a

′
1, h

′
2, . . . , h

′
m, a

′
m, h

′ from
the root toh′ it must be the case that:

1. n = m

2. For all 0 ≤ j ≤ n, hj andh′j are in the same equivalence class for playeri.

3. For all 0 ≤ j ≤ n, if ρ(hj) = i (that is,hj is a decision node of playeri), then
aj = a′j .

Multi Agent Systems, draft of September 19, 2006

What is an equilibrium in behavioral strategies?
again, D strongly dominant for 2
if 1 uses the behavioural strategy (p, 1− p), his expected
utility is 1 ∗ p2 + 100 ∗ p(1− p) + 2 ∗ (1− p)
simplifies to −99p2 + 98p+ 2
maximum at p = 98/198
thus equilibrium is (98/198, 100/198), (0, 1)

Thus, we can have behavioral strategies that are different
from mixed strategies.
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Perfect Recall: mixed and behavioral strategies coincide

No player forgets anything he knew about moves made so far.

Definition

Player i has perfect recall in an imperfect-information game G if
for any two nodes h, h′ that are in the same information set for
player i, for any path h0, a0, h1, a1, h2, . . . , hn, an, h from the root
of the game to h (where the hj are decision nodes and the aj are
actions) and any path h0, a

′
0, h

′
1, a

′
1, h

′
2, . . . , h

′
m, a

′
m, h

′ from the
root to h′ it must be the case that:

1 n = m

2 For all 0 ≤ j ≤ n, hj and h′j are in the same equivalence class
for player i.

3 For all 0 ≤ j ≤ n, if ρ(hj) = i (that is, hj is a decision node
of player i), then aj = a′j .

G is a game of perfect recall if every player has perfect recall in it.
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Perfect Recall

Clearly, every perfect-information game is a game of perfect recall.

Theorem (Kuhn, 1953)

In a game of perfect recall, any mixed strategy of a given agent
can be replaced by an equivalent behavioral strategy, and any
behavioral strategy can be replaced by an equivalent mixed
strategy. Here two strategies are equivalent in the sense that they
induce the same probabilities on outcomes, for any fixed strategy
profile (mixed or behavioral) of the remaining agents.

Corollary

In games of perfect recall the set of Nash equilibria does not
change if we restrict ourselves to behavioral strategies.
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Computing Equilibria of Games of Perfect Recall

How can we find an equilibrium of an imperfect information
extensive form game?

One idea: convert to normal form, and use techniques
described earlier.

Problem: exponential blowup in game size.

Alternative (at least for perfect recall): sequence form
for zero-sum games, computing equilibrium is polynomial in
the size of the extensive form game

exponentially faster than the LP formulation we saw before

for general-sum games, can compute equilibrium in time
exponential in the size of the extensive form game

again, exponentially faster than converting to normal form
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