Extensive Form Games

Lecture 7

Lecture Overview

(1) Recap

(2) Perfect-Information Extensive-Form Games

(3) Subgame Perfection

Computational Problems in Domination

- Identifying strategies dominated by a pure strategy
- polynomial, straightforward algorithm
- Identifying strategies dominated by a mixed strategy
- polynomial, somewhat tricky LP
- Identifying strategies that survive iterated elimination
- repeated calls to the above LP
- Asking whether a strategy survives iterated elimination under all elimination orderings
- polynomial for strict domination (elimination doesn't matter)
- NP-complete otherwise

Rationalizability

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
- assumes opponent is rational
- assumes opponent knows that you and the others are rational
- ...
- Equilibrium strategies are always rationalizable; so are lots of other strategies (but not everything).
- In two-player games, rationalizable \Leftrightarrow survives iterated removal of strictly dominated strategies.

Formal definition

Definition (Correlated equilibrium)

Given an n-agent game $G=(N, A, u)$, a correlated equilibrium is a tuple (v, π, σ), where v is a tuple of random variables $v=\left(v_{1}, \ldots, v_{n}\right)$ with respective domains $D=\left(D_{1}, \ldots, D_{n}\right), \pi$ is a joint distribution over $v, \sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is a vector of mappings $\sigma_{i}: D_{i} \mapsto A_{i}$, and for each agent i and every mapping $\sigma_{i}^{\prime}: D_{i} \mapsto A_{i}$ it is the case that

$$
\begin{aligned}
& \sum_{d \in D} \pi(d) u_{i}\left(\sigma_{1}\left(d_{1}\right), \ldots, \sigma_{i}\left(d_{i}\right), \ldots, \sigma_{n}\left(d_{n}\right)\right) \\
& \geq \sum_{d \in D} \pi(d) u_{i}\left(\sigma_{1}\left(d_{1}\right), \ldots, \sigma_{i}^{\prime}\left(d_{i}\right), \ldots, \sigma_{n}\left(d_{n}\right)\right)
\end{aligned}
$$

Existence

Theorem

For every Nash equilibrium σ^{*} there exists a corresponding correlated equilibrium σ.

- This is easy to show:
- let $D_{i}=A_{i}$
- let $\pi(d)=\prod_{i \in N} \sigma_{i}^{*}\left(d_{i}\right)$
- σ_{i} maps each d_{i} to the corresponding a_{i}.
- Thus, correlated equilibria always exist

Remarks

- Not every correlated equilibrium is equivalent to a Nash equilibrium
- thus, correlated equilibrium is a weaker notion than Nash
- Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium
- start with the Nash equilibria (each of which is a CE)
- introduce a second randomizing device that selects which CE the agents will play
- regardless of the probabilities, no agent has incentive to deviate
- the probabilities can be adjusted to achieve any convex combination of the equilibrium payoffs
- the randomizing devices can be combined

Computing CE

$$
\begin{array}{ll}
\sum_{a \in A \mid a_{i} \in a}\left[u_{i}(a)-u_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right] p(a) \geq 0 & \forall i \in N, \forall a_{i}, a_{i}^{\prime} \in A_{i} \\
p(a) \geq 0 & \forall a \in A \\
\sum_{a \in A} p(a)=1 &
\end{array}
$$

- variables: $p(a)$; constants: $u_{i}(a)$
- we could find the social-welfare maximizing CE by adding an objective function

$$
\text { maximize: } \quad \sum_{a \in A} p(a) \sum_{i \in N} u_{i}(a) .
$$

Lecture Overview

(1) Recap
(2) Perfect-Information Extensive-Form Games
(3) Subgame Perfection

Introduction

- The normal form game representation does not incorporate any notion of sequence, or time, of the actions of the players
- The extensive form is an alternative representation that makes the temporal structure explicit.
- Two variants:
- perfect information extensive-form games
- imperfect-information extensive-form games

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N is a set of n players

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A is a (single) set of actions

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H is a set of non-terminal choice nodes

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$ assigns to each choice node a set of possible actions

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$ assigns to each non-terminal node h a player $i \in N$ who chooses an action at h

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$
- Terminal nodes: Z is a set of terminal nodes, disjoint from H

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \rightarrow H \cup Z$ maps a choice node and an action to a new choice node or terminal node such that for all $h_{1}, h_{2} \in H$ and $a_{1}, a_{2} \in A$, if $\sigma\left(h_{1}, a_{1}\right)=\sigma\left(h_{2}, a_{2}\right)$ then $h_{1}=h_{2}$ and $a_{1}=a_{2}$
- The choice nodes form a tree, so we can identify a node with its history.

Definition

A (finite) perfect-information game (in extensive form) is defined by the tuple $(N, A, H, Z, \chi, \rho, \sigma, u)$, where:

- Players: N
- Actions: A
- Choice nodes and labels for these nodes:
- Choice nodes: H
- Action function: $\chi: H \rightarrow 2^{A}$
- Player function: $\rho: H \rightarrow N$
- Terminal nodes: Z
- Successor function: $\sigma: H \times A \rightarrow H \cup Z$
- Utility function: $u=\left(u_{1}, \ldots, u_{n}\right) ; u_{i}: Z \rightarrow \mathbb{R}$ is a utility function for player i on the terminal nodes Z

Example: the sharing game

Example: the sharing game

Play as a fun game, dividing 100 dollar coins. (Play each partner only once.)

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
- player 1: 3; player 2: 8

Pure Strategies

- In the sharing game (splitting 2 coins) how many pure strategies does each player have?
- player 1: 3; player 2: 8
- Overall, a pure strategy for a player in a perfect-information game is a complete specification of which deterministic action to take at every node belonging to that player.

Definition (pure strategies)

Let $G=(N, A, H, Z, \chi, \rho, \sigma, u)$ be a perfect-information extensive-form game. Then the pure strategies of player i consist of the cross product

$$
\underset{h \in H, \rho(h)=i}{\times} \chi(h)
$$

Pure Strategies Example

What are the pure strategies for player 2?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player 1 ?

Pure Strategies Example

What are the pure strategies for player 2?

- $S_{2}=\{(C, E) ;(C, F) ;(D, E) ;(D, F)\}$

What are the pure strategies for player 1 ?

- $S_{1}=\{(B, G) ;(B, H),(A, G),(A, H)\}$
- This is true even though, conditional on taking A, the choice between G and H will never have to be made

Nash Equilibria

Given our new definition of pure strategy, we are able to reuse our old definitions of:

- mixed strategies
- best response
- Nash equilibrium

Theorem

Every perfect information game in extensive form has a PSNE
This is easy to see, since the players move sequentially.

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

Induced Normal Form

- In fact, the connection to the normal form is even tighter - we can "convert" an extensive-form game into normal form

		$C E$		$C F$		$D E$	$D F$
$A G$	3,8	3,8	8,3	8,3			
$A H$	3,8	3,8	8,3	8,3			
$B G$	5,5	2,10	5,5	2,10			
$B H$	5,5	1,0	5,5	1,0			

Induced Normal Form

- In fact, the connection to the normal form is even tighter - we can "convert" an extensive-form game into normal form

	C		$C F$	
D	$D E$	$D F$		
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- this illustrates the lack of compactness of the normal form
- games aren't always this small
- even here we write down 16 payoff pairs instead of 5

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

- while we can write any extensive-form game as a NF, we can't do the reverse.
- e.g., matching pennies cannot be written as a perfect-information extensive form game

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

	$C E$		$C F$	
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

	$C E$		$C F$	
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
- $(A, G),(C, F)$
- $(A, H),(C, F)$
- $(B, H),(C, E)$

Induced Normal Form

- In fact, the connection to the normal form is even tighter
- we can "convert" an extensive-form game into normal form

	$C E$		$C F$	
$D E$	$D F$			
$A G$	3,8	3,8	8,3	8,3
$A H$	3,8	3,8	8,3	8,3
$B G$	5,5	2,10	5,5	2,10
$B H$	5,5	1,0	5,5	1,0

- What are the (three) pure-strategy equilibria?
- $(A, G),(C, F)$
- $(A, H),(C, F)$
- $(B, H),(C, E)$

Lecture Overview

(1) Recap
(2) Perfect-Information Extensive-Form Games
(3) Subgame Perfection

Subgame Perfection

- There's something intuitively wrong with the equilibrium $(B, H),(C, E)$
- Why would player 1 ever choose to play H if he got to the second choice node?
- After all, G dominates H for him

Subgame Perfection

- There's something intuitively wrong with the equilibrium $(B, H),(C, E)$
- Why would player 1 ever choose to play H if he got to the second choice node?
- After all, G dominates H for him
- He does it to threaten player 2, to prevent him from choosing F, and so gets 5
- However, this seems like a non-credible threat
- If player 1 reached his second decision node, would he really follow through and play H ?

Formal Definition

Definition (subgame of G rooted at h)

The subgame of G rooted at h is the restriction of G to the descendents of H.

Definition (subgames of G)

The set of subgames of G is defined by the subgames of G rooted at each of the nodes in G.

- s is a subgame perfect equilibrium of G iff for any subgame G^{\prime} of G, the restriction of s to G^{\prime} is a Nash equilibrium of G^{\prime}
- Notes:
- since G is its own subgame, every SPE is a NE.
- this definition rules out "non-credible threats"

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$:
- $(B, H),(C, E)$:
- $(A, H),(C, F)$:

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$: is subgame perfect
- $(B, H),(C, E)$:
- $(A, H),(C, F)$:

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$: is subgame perfect
- $(B, H),(C, E):(B, H)$ is an non-credible threat; not subgame perfect
- $(A, H),(C, F)$:

Which equilibria are subgame perfect?

- Which equilibria from the example are subgame perfect?
- $(A, G),(C, F)$: is subgame perfect
- $(B, H),(C, E):(B, H)$ is an non-credible threat; not subgame perfect
- $(A, H),(C, F):(A, H)$ is also non-credible, even though H is "off-path"

