Computing Domination; Correlated Equilibria

Lecture 6

Computing Domination; Correlated Equilibria

Lecture 6, Slide 1

3

Image: A matrix

Lecture Overview

2 Computational Problems Involving Domination

3 Rationalizability

4 Correlated Equilibrium

5 Computing Correlated Equilibria

• 3 • 4 3

Computing equilibria of zero-sum games

$$\begin{array}{ll} \text{minimize} & U_1^* \\ \text{subject to} & \sum_{a_2 \in A_2} u_1(a_1, a_2) \cdot s_2^{a_2} \leq U_1^* & \forall a_1 \in A_1 \\ & \sum_{a_2 \in A_2} s_2^{a_2} = 1 \\ & s_2^{a_2} \geq 0 & \forall a_2 \in A_2 \end{array}$$

- This formulation gives us the minmax strategy for player 2.
- To get the minmax strategy for player 1, we need to solve a second (analogous) LP.

Computing Maxmin Strategies in General-Sum Games

To compute a maxmin strategy for player 1 in an arbitrary 2-player game G:

- Create a new game G' where player 2's payoffs are just the negatives of player 1's payoffs.
- By the minmax theorem, equilibrium strategies for player 1 in G' are equivalent to a maxmin strategies
- Thus, to find a maxmin strategy for G, find an equilibrium strategy for G'.

Domination

• Let s_i and s'_i be two strategies for player i, and let S_{-i} be is the set of all possible strategy profiles for the other players

Definition

 s_i strictly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$

Definition

 s_i weakly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ and $\exists s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$

Definition

 s_i very weakly dominates s'_i if $\forall s_{-i} \in S_{-i}$, $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$

イロン イヨン イヨン イヨン

Iterated Removal of Dominated Strategies

- This process preserves Nash equilibria.
 - strict dominance: all equilibria preserved.
 - weak or very weak dominance: at least one equilibrium preserved.
- Thus, it can be used as a preprocessing step before computing an equilibrium
 - Some games are solvable using this technique.
- What about the order of removal when there are multiple dominated strategies?
 - strict dominance: doesn't matter.
 - weak or very weak dominance: can affect which equilibria are preserved.

Is s_i strictly dominated by any pure strategy?

Try to identify some pure strategy that is strictly better than s_i for any pure strategy profile of the others.

```
for all pure strategies a_i \in A_i for player i where a_i \neq s_i do
```

```
dom \gets true
```

for all pure strategy profiles $a_{-i} \in A_{-i}$ for the players other than i do

```
\begin{array}{l} \text{if } u_i(s_i,a_{-i}) \geq u_i(a_i,a_{-i}) \text{ then} \\ dom \leftarrow false \\ \text{break} \\ \text{end if} \\ \text{end for} \\ \text{if } dom = true \text{ then return } true \\ \text{end for} \\ \text{return } false \end{array}
```

- < 注 → - < 注 → - -

Lecture Overview

2 Computational Problems Involving Domination

3 Rationalizability

4 Correlated Equilibrium

5 Computing Correlated Equilibria

글 🕨 🖌 글

Computational Problems in Domination

- Identifying strategies dominated by a pure strategy (done)
- Identifying strategies dominated by a mixed strategy
- Identifying strategies that survive iterated elimination
- Asking whether a strategy survives iterated elimination under all elimination orderings
- We'll assume that *i*'s utility function is strictly positive everywhere (why is this OK?)

Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\sum_{\substack{j \in A_i \\ p_j \ge 0}} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$
$$p_j \ge 0 \qquad \forall j \in A_i$$
$$\sum_{j \in A_i} p_j = 1$$

Computing Domination; Correlated Equilibria

Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\sum_{\substack{j \in A_i \\ p_j \ge 0}} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$
$$p_j \ge 0 \qquad \forall j \in A_i$$
$$\sum_{j \in A_i} p_j = 1$$

• What's wrong with this program?

Constraints for determining whether s_i is strictly dominated by any mixed strategy

$$\sum_{j \in A_i} p_j u_i(a_j, a_{-i}) > u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i}$$
$$p_j \ge 0 \qquad \forall j \in A_i$$
$$\sum_{j \in A_i} p_j = 1$$

- What's wrong with this program?
 - strict inequality in the first constraint means we don't have an LP

LP for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{j \in A_i} p_j \\ \mbox{subject to} & \displaystyle \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) \geq u_i(s_i, a_{-i}) & \quad \forall a_{-i} \in A_{-i} \\ & \displaystyle p_j \geq 0 & \quad \forall j \in A_i \end{array}$$

• This is clearly an LP. Why is it a solution to our problem?

LP for determining whether s_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \mbox{minimize} & \displaystyle \sum_{j \in A_i} p_j \\ \mbox{subject to} & \displaystyle \sum_{j \in A_i} p_j u_i(a_j, a_{-i}) \geq u_i(s_i, a_{-i}) & \quad \forall a_{-i} \in A_{-i} \\ & \displaystyle p_j \geq 0 & \quad \forall j \in A_i \end{array}$$

- This is clearly an LP. Why is it a solution to our problem?
 - if a solution exists with $\sum_{j} p_{j} < 1$ then we can add $1 \sum_{j} p_{j}$ to some p_k and we'll have a dominating mixed strategy (since utility was assumed to be positive everywhere)
- Our original approach works for very weak domination
- For weak domination we can use that program with a different objective function trick.

Identifying strategies that survive iterated elimination

- This can be done by repeatedly solving our LPs: solving a polynomial number of LPs is still in \mathcal{P} .
 - Checking whether every pure strategy of every player is dominated by any other mixed strategy requires us to solve at worst $\sum_{i\in N} |A_i|$ linear programs.
 - Each step removes one pure strategy for one player, so there can be at most $\sum_{i\in N}(|A_i|-1)$ steps.
 - Thus we need to solve $O((n \cdot \max_i |A_i|)^2)$ linear programs.

Further questions about iterated elimination

- (Strategy Elimination) Does there exist some elimination path under which the strategy s_i is eliminated?
- ② (Reduction Identity) Given action subsets A'_i ⊆ A_i for each player i, does there exist a maximally reduced game where each player i has the actions A'_i?
- (Uniqueness) Does every elimination path lead to the same reduced game?
- (Reduction Size) Given constants k_i for each player i, does there exist a maximally reduced game where each player i has exactly k_i actions?

• E • • E •

Further questions about iterated elimination

- (Strategy Elimination) Does there exist some elimination path under which the strategy s_i is eliminated?
- ② (Reduction Identity) Given action subsets A'_i ⊆ A_i for each player i, does there exist a maximally reduced game where each player i has the actions A'_i?
- (Uniqueness) Does every elimination path lead to the same reduced game?
- (Reduction Size) Given constants k_i for each player i, does there exist a maximally reduced game where each player i has exactly k_i actions?
 - For iterated strict dominance these problems are all in \mathcal{P} .
 - For iterated weak or very weak dominance these problems are all \mathcal{NP} -complete.

白 と く ヨ と く ヨ と …

Lecture Overview

2 Computational Problems Involving Domination

3 Rationalizability

④ Correlated Equilibrium

5 Computing Correlated Equilibria

글 🕨 🖌 글

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?
- Will there always exist a rationalizable strategy?

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?
- Will there always exist a rationalizable strategy?
 - Yes, equilibrium strategies are always rationalizable.

- Rather than ask what is irrational, ask what is a best response to some beliefs about the opponent
 - assumes opponent is rational
 - assumes opponent knows that you and the others are rational
 - ...
- Examples
 - is *heads* rational in matching pennies?
 - is *cooperate* rational in prisoner's dilemma?
- Will there always exist a rationalizable strategy?
 - Yes, equilibrium strategies are always rationalizable.
- Furthermore, in two-player games, rationalizable ⇔ survives iterated removal of strictly dominated strategies.

Lecture Overview

Recap

2 Computational Problems Involving Domination

3 Rationalizability

4 Correlated Equilibrium

5 Computing Correlated Equilibria

글 🕨 🖌 글

If there is intelligent life on other planets, in a majority of them, they would have discovered correlated equilibrium

before Nash equilibrium.

- Roger Myerson

Examples

- Consider again Battle of the Sexes.
 - Intuitively, the best outcome seems a 50-50 split between (F,F) and (B,B).
 - But there's no way to achieve this, so either someone loses out (unfair) or both players often miscoordinate
- Another classic example: traffic game

	go	wait
go	-100, -100	10, 0
B	0, 10	-10, -10

• What is the natural solution here?

< ∃→

<ロ> <同> <同> <同> < 同>

Intuition

- What is the natural solution here?
 - A traffic light: a fair randomizing device that tells one of the agents to go and the other to wait.
- Benefits:
 - the negative payoff outcomes are completely avoided
 - fairness is achieved
 - the sum of social welfare exceeds that of any Nash equilibrium
- We could use the same idea to achieve the fair outcome in battle of the sexes.
- Our example presumed that everyone perfectly observes the random event; not required.
- More generally, some random variable with a commonly known distribution, and a private signal to each player about the outcome.
 - signal doesn't determine the outcome or others' signals; however, correlated

Formal definition

Definition (Correlated equilibrium)

Given an *n*-agent game G = (N, A, u), a correlated equilibrium is a tuple (v, π, σ) , where v is a tuple of random variables $v = (v_1, \ldots, v_n)$ with respective domains $D = (D_1, \ldots, D_n)$, π is a joint distribution over $v, \sigma = (\sigma_1, \ldots, \sigma_n)$ is a vector of mappings $\sigma_i : D_i \mapsto A_i$, and for each agent i and every mapping $\sigma'_i : D_i \mapsto A_i$ it is the case that

$$\sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma_i(d_i), \dots, \sigma_n(d_n) \right)$$
$$\geq \sum_{d \in D} \pi(d) u_i \left(\sigma_1(d_1), \dots, \sigma'_i(d_i), \dots, \sigma_n(d_n) \right).$$

Existence

Theorem

For every Nash equilibrium σ^* there exists a corresponding correlated equilibrium σ .

- This is easy to show:
 - let $D_i = A_i$
 - let $\pi(d) = \prod_{i \in N} \sigma_i^*(d_i)$
 - σ_i maps each d_i to the corresponding a_i .
- Thus, correlated equilibria always exist

Remarks

- Not every correlated equilibrium is equivalent to a Nash equilibrium
 - thus, correlated equilibrium is a weaker notion than Nash
- Any convex combination of the payoffs achievable under correlated equilibria is itself realizable under a correlated equilibrium
 - start with the Nash equilibria (each of which is a CE)
 - introduce a second randomizing device that selects which CE the agents will play
 - regardless of the probabilities, no agent has incentive to deviate
 - the probabilities can be adjusted to achieve any convex combination of the equilibrium payoffs
 - the randomizing devices can be combined

Lecture Overview

2 Computational Problems Involving Domination

3 Rationalizability

4 Correlated Equilibrium

글 🕨 🖌 글

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{a \in A} p(a) = 1$$

• variables: p(a); constants: $u_i(a)$

< Ξ

A ►

Computing CE

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{\substack{a \in A}} p(a) = 1$$

- variables: p(a); constants: $u_i(a)$
- we could find the social-welfare maximizing CE by adding an objective function

maximize:
$$\sum_{a \in A} p(a) \sum_{i \in N} u_i(a).$$

Why are CE easier to compute than NE?

$$\sum_{\substack{a \in A \mid a_i \in a}} p(a)u_i(a) \ge \sum_{\substack{a \in A \mid a'_i \in a}} p(a)u_i(a'_i, a_{-i}) \quad \forall i \in N, \, \forall a_i, a'_i \in A_i$$

$$p(a) \ge 0 \qquad \qquad \forall a \in A$$

$$\sum_{\substack{a \in A}} p(a) = 1$$

- intuitively, correlated equilibrium has only a single randomization over outcomes, whereas in NE this is constructed as a product of independent probabilities.
- To change this program so that it finds NE, the first constraint would be

$$\sum_{a \in A} u_i(a) \prod_{j \in N} p_j(a_j) \ge \sum_{a \in A} u_i(a'_i, a_{-i}) \prod_{j \in N \setminus \{i\}} p_j(a_j) \quad \forall i \in N, \, \forall a'_i \in A_i.$$

• This is a nonlinear constraint!