Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
	Revelation P	rinciple; Qu	iasilinear Utilit	y 🛛
		Lecture 14		

Revelation Principle; Quasilinear Utility

Lecture 14, Slide 1

◆□ → ◆□ → ◆目 → ◆目 → ◆□ →

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Lecture	Overview			

- 2 Revelation Principle
- Impossibility
- Quasilinear Utility
- 5 Risk Attitudes

→ Ξ → < Ξ →</p>

A ₽

 Recap
 Revelation Principle
 Impossibility
 Quasilinear Utility
 Risk Attitudes

 Bayesian Game Setting

- Extend the social choice setting to a new setting where agents can't be relied upon to disclose their preferences honestly.
- Start with a set of agents in a Bayesian game setting (but no actions).

Definition (Bayesian game setting)

A Bayesian game setting is a tuple (N, O, Θ, p, u) , where

- N is a finite set of n agents;
- O is a set of outcomes;
- $\Theta = \Theta_1 \times \cdots \times \Theta_n$ is a set of possible joint type vectors;
- p is a (common prior) probability distribution on Θ ; and
- $u = (u_1, \ldots, u_n)$, where $u_i : O \times \Theta \mapsto \mathbb{R}$ is the utility function for each player *i*.

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Mechan	ism Design			

Definition (Mechanism)

A mechanism (for a Bayesian game setting $(N,O,\Theta,p,u))$ is a pair (A,M), where

- $A = A_1 \times \cdots \times A_n$, where A_i is the set of actions available to agent $i \in N$; and
- $M: A \mapsto \Pi(O)$ maps each action profile to a distribution over outcomes.

Thus, the designer gets to specify

- the action sets for the agents (though they may be constrained by the environment)
- the mapping to outcomes, over which agents have utility
- can't change outcomes; agents' preferences or type spaces

|▲□ ▶ ▲ 目 ▶ ▲ 目 ▶ ● のへの

Implementation in Dominant Strategies

Definition (Implementation in dominant strategies)

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M) is an implementation in dominant strategies of a social choice function C (over N and O) if for any vector of utility functions u, the game has an equilibrium in dominant strategies, and in any such equilibrium a^* we have $M(a^*) = C(u)$.

Implementation in Bayes-Nash equilibrium

Definition (Bayes–Nash implementation)

Given a Bayesian game setting (N, O, Θ, p, u) , a mechanism (A, M) is an implementation in Bayes–Nash equilibrium of a social choice function C (over N and O) if there exists a Bayes–Nash equilibrium of the game of incomplete information (N, A, Θ, p, u) such that for every $\theta \in \Theta$ and every action profile $a \in A$ that can arise given type profile θ in this equilibrium, we have that $M(a) = C(u(\cdot, \theta))$.

イロト イポト イヨト イヨト

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Properti	es			

Forms of implementation

- Direct Implementation: agents each simultaneously send a single message to the center
- Indirect Implementation: agents may send a sequence of messages; in between, information may be (partially) revealed about the messages that were sent previously like extensive form

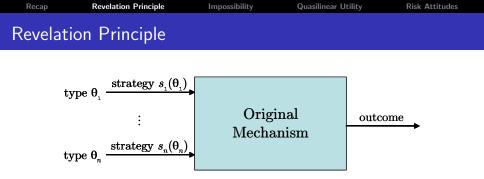
We can also insist that our mechanism satisfy properties like the following:

- individual rationality: agents are better off playing than not playing
- budget balance: the mechanism gives away and collects the same amounts of money
- truthfulness: agents honestly report their types

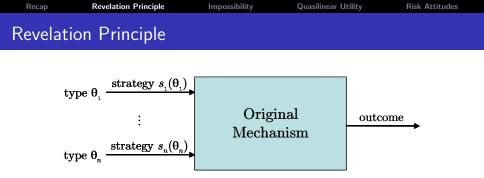
Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Lecture	Overview			

2 Revelation Principle

Impossibility

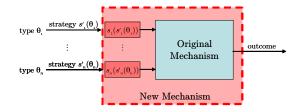

Quasilinear Utility

5 Risk Attitudes


< 注→ < 注

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Revelat	ion Principle			

- It turns out that any social choice function that can be implemented by any mechanism can be implemented by a truthful, direct mechanism!
- Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)


- It turns out that any social choice function that can be implemented by any mechanism can be implemented by a truthful, direct mechanism!
- Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)

- It turns out that any social choice function that can be implemented by any mechanism can be implemented by a truthful, direct mechanism!
- Consider an arbitrary, non-truthful mechanism (e.g., may be indirect)
- Recall that a mechanism defines a game, and consider an equilibrium $s=(s_1,\ldots,s_n)$

イロン イヨン イヨン イヨン

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Revelat	ion Principle			

- We can construct a new direct mechanism, as shown above
- This mechanism is truthful by exactly the same argument that s was an equilibrium in the original mechanism
- "The agents don't have to lie, because the mechanism already lies for them."

Computational Criticism of the Revelation Principle

• computation is pushed onto the center

- often, agents' strategies will be computationally expensive
 - e.g., in the shortest path problem, agents may need to compute shortest paths, cutsets in the graph, etc.
- since the center plays equilibrium strategies for the agents, the center now incurs this cost
- if computation is intractable, so that it cannot be performed by agents, then in a sense the revelation principle doesn't hold
 - agents can't play the equilibrium strategy in the original mechanism
 - however, in this case it's unclear what the agents will do

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Discussi	on of the Reve	lation Princ	ciple	

- The set of equilibria is not always the same in the original mechanism and revelation mechanism
 - of course, we've shown that the revelation mechanism does have the original equilibrium of interest
 - however, in the case of indirect mechanisms, even if the indirect mechanism had a unique equilibrium, the revelation mechanism can also have new, bad equilibria
- So what is the revelation principle good for?
 - recognition that truthfulness is not a restrictive assumption
 - for analysis purposes, we can consider only truthful mechanisms, and be assured that such a mechanism exists
 - recognition that indirect mechanisms can't do (inherently) better than direct mechanisms

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Lecture	Overview			

2 Revelation Principle

Impossibility

Quasilinear Utility

5 Risk Attitudes

Impossibility Result

Theorem (Gibbard-Satterthwaite)

Consider any social choice function C of N and O. If:

- 0 |O| > 3 (there are at least three outcomes);
- 2 C is onto; that is, for every $o \in O$ there is a preference profile $[\succ]$ such that $C([\succ]) = o$ (this property is sometimes also called citizen sovereignty); and
- 3 C is dominant-strategy truthful,

then C is dictatorial.

• E • • E • •

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
What d	oes this mean?			

- We should be discouraged about the possibility of implementing arbitrary social-choice functions in mechanisms.
- However, in practice we can circumvent the Gibbard-Satterthwaite theorem in two ways:
 - use a weaker form of implementation
 - note: the result only holds for dominant strategy implementation, not e.g., Bayes-Nash implementation
 - relax the onto condition and the (implicit) assumption that agents are allowed to hold arbitrary preferences

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Lecture	Overview			

1 Recap

2 Revelation Principle

3 Impossibility

Quasilinear Utility

5 Risk Attitudes

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Quasilin	ear Utility			

Definition (Quasilinear preferences)

Agents have quasilinear preferences in an n-player Bayesian game when the set of outcomes is

$$O = X \times \mathbb{R}^n$$

for a finite set X, and the utility of an agent i given joint type θ is given by

$$u_i(o,\theta) = u_i(x,\theta) - f_i(p_i),$$

where o = (x, p) is an element of O, $u_i : X \times \Theta \mapsto \mathbb{R}$ is an arbitrary function and $f_i : \mathbb{R} \mapsto \mathbb{R}$ is a strictly monotonically increasing function.

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Quasilin	lear utility			

•
$$u_i(o,\theta) = u_i(x,\theta) - f_i(p_i)$$

• We split the mechanism into a choice rule and a payment rule:

- $x \in X$ is a discrete, non-monetary outcome
- $p_i \in \mathbb{R}$ is a monetary payment (possibly negative) that agent i must make to the mechanism
- Implications:

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Quasilin	lear utility			

•
$$u_i(o,\theta) = u_i(x,\theta) - f_i(p_i)$$

• We split the mechanism into a choice rule and a payment rule:

- $x \in X$ is a discrete, non-monetary outcome
- $p_i \in \mathbb{R}$ is a monetary payment (possibly negative) that agent i must make to the mechanism
- Implications:
 - $u_i(x, \theta)$ is not influenced by the amount of money an agent has
 - agents don't care how much others are made to pay (though they *can* care about how the choice affects others.)

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Quasilin	lear utility			

•
$$u_i(o,\theta) = u_i(x,\theta) - f_i(p_i)$$

• We split the mechanism into a choice rule and a payment rule:

- $x \in X$ is a discrete, non-monetary outcome
- $p_i \in \mathbb{R}$ is a monetary payment (possibly negative) that agent i must make to the mechanism
- Implications:
 - $u_i(x, \theta)$ is not influenced by the amount of money an agent has
 - agents don't care how much others are made to pay (though they *can* care about how the choice affects others.)

• What is $f_i(p_i)$?

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Lecture	Overview			

1 Recap

- 2 Revelation Principle
- Impossibility
- Quasilinear Utility

Revelation Principle; Quasilinear Utility

▲ E → E → Q Q Lecture 14, Slide 19

< E → < E →</p>

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Fun gan	ne			

- Look at your piece of paper: it contains an integer \boldsymbol{x}
- Go around the room offering everyone the following gamble:
 - ${\scriptstyle \bullet} \,$ they pay you x
 - you flip a coin:
 - $\bullet\,$ heads: they win and get paid 2x
 - tails: they lose and get nothing.
 - Players can accept the gamble or decline.
 - Answer honestly (imagining the amounts of money are real)
 - play the gamble to see what would have happened.
 - Keep track of:
 - Your own "bank balance" from others' gambles you accepted.
 - The number of people who accepted your offer.

- How much is \$1 worth?
 - What are the units in which this question should be answered?

프 🖌 🛪 프 🕨

A ■

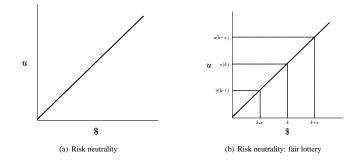
Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Risk Att	titudes			

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)

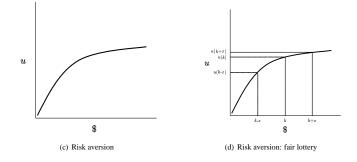
3

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Risk At	titudes			

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)
 - Different amounts depending on the amount of money you already have

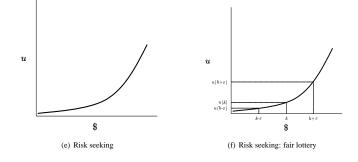

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Risk At	titudes			

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)
 - Different amounts depending on the amount of money you already have
- How much is a gamble with an expected value of \$1 worth?


Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Risk Att	titudes			

- How much is \$1 worth?
 - What are the units in which this question should be answered? Utils (units of utility)
 - Different amounts depending on the amount of money you already have
- How much is a gamble with an expected value of \$1 worth?
 - Possibly different amounts, depending on how risky it is

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Risk Ne	utrality			



・ロ・ ・ 日・ ・ 日・ ・ 日・

Recap	Revelation Principle	Impossibility	Quasilinear Utility	Risk Attitudes
Risk See	eking			

