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Abstract

Compact representations have recently been developed as a way of

both encoding the strategic interactions of a game in an intuitive way.

They are also useful in speeding up the computation of important solution

concepts such as Nash Equiliria, because they can often be represented

in a size that is polynomial in the number of players. Rather than di-

rectly encoding a game in a compact form, another approach is to factor

the game into smaller subgames, and then perform computation in the

factored space. In this paper, I give an overview of one kind of compact

representation called a Graphical Game, and I discuss the approach of

factoring games. I then use the idea of creating approximate factorings,

which preserve ǫ-equilbria to develop a new algorithm that can be used

to simplify computation in a Graphical Game by creating an approximate

version.

1 Introduction

In the earliest forms of Game Theory, the standard way to represent a game
was to use the so called Normal Form. Given n players with action sets
A = {A1, A2, ..., An} the Normal form is an enumeration of the utilities U =
(u1, u2, ..., un) of each player over all possible action profiles a ∈ A. While useful
for visualizing and analyzing small games, the size of this representation has the
unfortunate characteristic of growing exponentially in the number of players. In
this form, a calculation that is linear in the size of the game, such as Expected
Value, will take exponential time if the number of players is unbounded. In
reality, there are many games that exhibit some form of structure which can be
exploited. For example, two players in an n player game might have no ability
to influence each others utilities, and in this case the Normal Form would store
redundant information. Compact representations, such as Graphical Games[4],
Action Graph Games[3], Multi Agent Influence Diagrams[5], are able to signif-
icantly reduce the size of a game with special structure, allowing them to be
represented with storage that grows polynomially with the number of players.
In these reduced representations, algorithms have been found that significantly
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speed up the computation of important solution concepts such as Nash Equi-
libria or Correlated Equilibria.

Recently, an alternative approach to representing games in a more compact
form has been proposed in [2]. Rather than knowing the structure in advance,
this approach takes a Normal Form game and attempts to automatically find a
specific kind of independence structure within the game. If such a structure is
found, then the idea is to split the game up into a number of smaller subgames,
or Factor Games. Within these factor games, it has been shown that their Nash
Equilibria and associated strategy profiles can be combined to form a Nash
Equilibrium in the original game. Unfortunately, the independence structure
that this technique is able to exploit is extremely limited. More interestingly,
there is a way to automatically factor games into approximate subgames where
ǫ-equilibria (an equilibrium where no agent can gain more than ǫ by deviating)
are preserved.

In this paper I give an overview of Graphical Games, including highlighting
some algorithms that are able to use their structure to greatly speed up com-
putation of Nash Equilibria. I then describe the Factoring Games algorithm in
its exact and approximate forms, and I discuss some issues that will arise when
using this approach in practice. Finally, I propose an algorithm that merges the
ideas of Factoring Games and Compact Representations together by iteratively
removing edges from a graphical game while attempting to compensate for the
loss of strategic interaction between players. In this way, fast approximation
techniques may be developed for certain classes of games that can be used to
speed up computation of ǫ-equilibria.

2 Compact Games Representations

2.1 Motivation

One of the most fundamental problems in Game Theory is the expected utility
problem[7]. In a normal form game, computing expected utility for an agent
consists of simply looking over each possible outcome, and multiplying the prob-
ability that the outcome will occur by the utility the agent will receive for that
outcome. While this simple algorithm is linear in the size of the game represen-
tation, it will be exponential for Normal Form representations. In general, this
algorithm becomes increasingly more difficult when the size of the representa-
tion is reduced, and can potentially be exponential if the game is compacted in
a naive way.

Several representations exist, however, that do not arbitrarily compress the
representation size of a game, but rather exploit structure within the game. In
many situations, this can lead to polynomial time expected utility algorithms
over a representation that is polynomial in the number of players n and actions
|A|. Indeed, it has been shown that in certain compact representations, comput-
ing a Nash Equilibrium can be reduced to computing the Nash Equilibrium in
a general-sum 2 player Normal Form game, where the representation size only
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larger by a polynomial amount. This is a good result, as the problem of finding a
Nash Equilibrium was recently found in [1] to be PPAD-complete, which means
that in some cases computing Equilibria can be exponentially faster using a
compact representation.

2.2 Graphical Games

In a Graphical Game, we can represent n players and A = A1×A2×...An actions
per player as an undirected graph G = (V,E). In such a game, each vertex Vi

corresponds to a player i, and each edge E corresponds to links between players.
A player j is said to be a neighbour of i if there is an edge (j, i) ∈ E. The set of
neighbours of Each player is denoted v(i). In these games, i has an action set
Ai that they can choose from, and their utility is only influenced by their own
action, and the actions of their neighbours.

Such a representation captures independence between payoffs, as players who
are not neighbours in the graph cannot directly influence each others utilities.
Since each node essentially stores a normal form representation of the game
with only players from the set v(i), the representation size will be exponential
in |v(i)|. If |v(i)| is bounded by a constant, then this means that the corre-
sponding Grapical Game will be polynomial in the number of players n. With
these results, there are a number of algorithms that could be applied to com-
puting Nash Equilibria. One such algorithm called TreeProp will compute an
ǫ-equilibrium in polynomial time if the graph has a tree structure.

3 Factoring Games

3.1 Exact Factoring

Factoring Games takes a different approach to creating a Compact Representa-
tion. The idea is that to automatically find structure in a Normal Form game
that allows it to be split into two independent sub-games whose overall strategy
space is the same as the original game. Using this, standard problems like Nash
Equilibria could be computed more efficiently in this smaller representation, and
these would correspond to the same equilibria as those in the full game. The
following definitions explain how such a factoring is represented

Definition 1. The product of two n-player games Ga and Gb, Ga ⊗ Gb is

a new n-player game Gc in which

• The pure strategy set for player i is the Cartesian product Sc
i = Sa

i × Sb
i

of agent i’s pure strategy sets Sa
i in Ga and Sb

i in Gb. There is exactly
one pure strategy profile sc ∈ Sc for every pair of pure strategy profiles
sa ∈ Sa and sb ∈ Sb

• For pure strategy profile sa ∈ Sa, sb ∈ Sb and sc ∈ Sc, ∀i agent i’s utility
is uc

i (sc) = ua
i (sa) + ub

i (sb)
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Definition 2. When we can write an n-player game Gc as Ga ⊗ Gb then Ga

and Gb are called the factors of Gc

Thus, the game factoring algorithm is designed to find factors where the
utilities of outcomes in the product game can be written as the sum of the
utilities from outcomes in the factor games. In MAID’s, games with this sort
of structure would be represented as several different connected components,
with each connected component representing a factor. As an example of such a
game, the authors introduced the Direct Flight Game

neither LA-CH CH-NY Both
neither 0,0 0,2 0,4 0,6
LA-CH 2,0 -1,-1 2,4 -1,3
CH-NY 4,0 4,2 -1,-1 -1,1

Both 6,0 3,-1 1,-1 -2,-2

In this game, there are two airlines, and two routes. Each airline can choose
to open one route, the other, both, or none. Here, the routes are completely
independent of each other, and so the game can be split into two factors.

¬ LA-CH LA-CH
¬ LA-CH 0,0 0,2

LA-CH 2,0 -1,-1

¬ CH-NY CH-NY
¬ CH-NY 0,0 0,4

CH-NY 4,0 -1,-1

Notice that the sum of the utilities from action profiles taken in the factor
games results in the payoffs given in the product game.

There are some interesting results that come from considering such factor-
ings, namely that if such a factoring exists, then combining the strategies of
Nash Equilibrium strategy profiles in the factor games will result in a strategy
profile that is a Nash Equilibrium of the product game.

In order to automatically determine such a factoring if one exists, the authors
represent the utilities for each player i as a polynomial where each term signifies
all possible outcomes given that player i chooses a specific action, and every
action that can be taken by player i is represented as a term in this polynomial.
In essence, when the game is represented as these polynomials then they can be
factored using standard polynomial factoring algorithms. The resulting factors
then represent the outcomes of the factor games. The details of this are not
particularly illuminating, but the end result is that if one or more factorings of
this sort exist, then their algorithm will find it in time polynomial in the size of
the representation.

Unfortunately, since the representation is Normal Form, this doesn’t appear
to be very useful in a general case because it will be exponential in the number
of players. Additionally, it seems hard to justify whether arbitrary Normal Form
games will exhibit the special structure this algorithm requires.
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3.2 Approximate Factoring

A more interesting result of the paper is the idea of Approximate Game Fac-
toring. If no independence structure exists, then the idea behind Approximate
Game Factoring is to divide a game into two factors such that the product
game only approximately represents the original game to within some ǫ. More
formally,

Definition 3. Given ǫ > 0, an ǫ-equilibrium of a game G is an strategy profile

s where for every player i ∀s′ 6= s ui(s) + ǫ ≥ ui(s
′)

Definition 4. A collection of factor games F with product Ga is an

ǫ-factoring of a game Gb if for every strategy profile sa ∈ Sa, sb ∈ Sb
∣

∣ui(s
a) − ui(s

b)
∣

∣ ≤ ǫ for all players i

The authors show that a product game under a strategy profile in which
each of factor games are in ǫ-equilibrium is also in ǫ-equilibrium.

In order to illustrate the idea, the authors modify the Direct Flight Game to
the Indirect Flight Game. In this case, there is a bonus reward of 2 for servicing
both routes because it allows for indirect flights.

neither LA-CH CH-NY Both
neither 0,0 0,2 0,4 0,8
LA-CH 2,0 -1,-1 2,4 -1,5
CH-NY 4,0 4,2 -1,-1 -1,3

Both 8,0 5,-1 3,-1 -1,-1

In this case, the two flights are no longer independent. In the context of
MAID’s they are said to strategically interact, and can no longer be thought of
as two separate connected components. This means that no factoring exists, so
the algorithm given above will not work. Interestingly enough, if one were to
still pursue factoring, and naively assumed that the two flights were indepen-
dent, then the smallest ǫ achievable becomes 2. With approximate factoring,
however, it is possible to do better. Instead of simply factoring the game and ig-
noring dependencies, approximate factoring attempts to restructure the payoffs
available to each player so as to minimize the impact of ignoring the dependence
relation. Under the optimal approximate factoring, the new payoffs in the factor
games become

¬ LA-CH LA-CH
¬ LA-CH − 1

4 ,− 1
4 − 1

4 ,2 3
4

LA-CH 2 3
4 ,− 1

4 − 1
4 ,− 1

4

¬ CH-NY CH-NY
¬ CH-NY − 1

4 , − 1
4 − 1

4 , 4 3
4

CH-NY 4 3
4 , − 1

4 − 1
4 ,− 1

4

In this game, the largest difference between utilities in the product game
and the original game are bounded by ǫ = 1

2 .
The way this is accomplished is via a linear program. Given a proposed

factoring of a game Gc into Ga an Gb, for each player i and pair of distinct pure
strategy profiles s, s′ ∈ Sc of Gc the authors propose the following
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minua

i
(sa),ub

i
(sb) ua

i (sa) + ub
i (s

b) − uc
i (s) = ǫ

subject to
ua

i (sa) + ub
i (s

b) − uc
i (s) = −(ua

i (s′a) + ub
i (s

′b) − uc
i (s

′))
∀sa ∈ Sa, sb ∈ Sb ua

i (sa) + ub
i (sb) − uc

i (sa ⊗ sb) ≤ ui(s
a) + ui(s

b) − si(s
c) = ǫ

∀sa ∈ Sa, sb ∈ Sb ua
i (sa)+ub

i (sb)−uc
i (sa ⊗ sb) ≥ ui(s

′a)+ui(s
′b)− si(s

′c) = −ǫ

The idea here is to minimize the difference between the utilities in the prod-
uct game, and the utilities in the original game. The first constraint ensures
that the difference will be bounded above and below by the same ǫ, a require-
ment for ǫ-equilibria. The second and third constraints ensure that no utilities
for actions played in the factored games can overestimate or underestimate the
utilities in the full game by any more than ǫ. This linear program is then run
over all players and pairs of distinct pure strategy profiles, and the resulting
maximum ǫ found is taken to be the largest error between utilities in Gc and
Ga ⊗ Gb.

The computational complexity of enumerating over all distinct pairs of out-
comes for each player is

O(n
(

|S|
2

)

) = O(n |S||S−1|
2 )

While this is polynomial in the size of the representation, in a Normal Form
game where n is unbounded |S| will grow exponentially, and so this algorithm
will require exponential time to compute an ǫ-factoring. Another drawback
to this approach is that it requires that the factoring be given in advance.
The authors propose a brute-force search over possible factorings, but admit
that this is infeasible. Still, if such factorings could be found, and the size of
the representation bounded, then it would be interesting to see whether this
algrorithm could devise good approximations in a practical scenario.

4 Approximation Techniques for Compact Games

In the ideal case, any computation performed on games would yield exact solu-
tions. Of course, there are a number of bottlenecks that make such a goal very
difficult to achieve. Several were mentioned previously such as the sheer size
of the search space, and the complexity of the underlying algorithms. Others
are more subtle, such as the restriction to machine precision. Since exact com-
putation is often intractable, it may be useful in practical situations to allow
for approximations. Indeed, the authors in [6] argue that in cases of bounded
rationality, agents will converge to ǫ-equilibria. While the authors treat the idea
of factoring games as a separate issue from computation in compact represen-
tations, I believe that the two ideas are not mutually exclusive. The creators
of Factor Games suggest that computing Factors in existing compact represen-
tations might be an easier problem. It seems unlikely that nice, clean factors
as described above would exist in the majority of games, however there may be
uses for approximate factorings to find ǫ-equilibria. First, notice that restricting

6



our attention to compact games allows us to exploit two properties that do not
exist in the Normal Form:

1. The algorithms presented above are polynomial in the size of the represen-
tation, and the representation in compact games are generally polynomial
in the number of players. Thus, the algorithms presented above would be
polynomial if applied to a polynomial compact representation.

2. The approximate factoring algorithm requires a factoring as its input.
In compact representations, existing decomposition algorithms could be
potentially used to generate such factors.

I believe that the most important contribution the Factoring Games paper
made was the idea of compensating for lost strategic dependencies. By restruc-
turing the utilities of an approximated game such that its solution properties
are as close as possible to the original game, we could simplify computation
while ensuring that the results remain valid.

If we were to apply factoring games directly to Graphical Games, then a
potential factoring would need to be devised by severing edges in the game until
we were left with two separate, connected components. In order to find the
optimal edges to cut, we would need to be aware of the impact this would have
on the approximate equilibria of the game, and we would need to find some
way of cutting the optimal edges to create two smaller subgames. This would
require some notion of the cost of each edge, and we would have to resort to
some technique such as Normalized Graph Cuts[6] in order to find the optimal
partition. Rather than taking this approach, I suggest a decomposition where
edges are removed from the game one by one until the game has been reduced
to a more manageable, but not necessarily separated form. Such an algorithm
would be used as a preprocessing step in computing approximate equilibria. It
may be useful to reduce a game to a form such as a tree which would enable the
use of algorithms like TreeProp. Such an approach could also be an interesting
way of simulating equilibria with bounded rationality.

Consider a Graphical Game where we have 3 players, a b and c. Each player
would be represented as a node on the graph. Now consider two directed edges
(b, a) and (c, a). This means that a’s utility is directly influenced by the actions
of b and c. Let the payoffs for agent a be given by the following matrix

b1 b2

a1 1 3
a2 0 1

b1 b2

a1 3 0
a2 1 1

c1 c2

Here, a is able to choose the row, b is able to choose the column, and c is able
to choose the matrix. Denote a’s utility function for action profile (ai, bj , ck)
as ua(i, j, k). Our goal is to find an edge weight ǫ for the directed edge (c, a)
such that if we remove this edge, we can restructure the payoffs of a so that the
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difference between a’s payoffs in the original utility funcion, and a’s payffs in
the new utility function (which is independent of c) is at most ǫ. To do this,
first notice that removing dependence on c effectively removes a single matrix
from the representation above. Thus, we can encode a’s payoffs in the new game
as 4 variables (u11, u12, u21, u22). If we were to then project this out into the
3-Dimensional space occupied by the original game, the resulting payoffs would
be

b1 b2

a1 u11 u12

a2 u21 u22

b1 b2

a1 u11 u12

a2 u21 u22

c1 c2

The new game now has redundancies because we have removed c’s ability
to affect a’s payoffs. To find the minimum ǫ, we must first decide how we are
going to do this projection from the the original game onto the new game. After
this, we must decide on a loss function. Here I choose the same loss function as
was given in the Factoring Games paper (minimizing the maximum ǫ), however
there may be potential to define other loss functions. For simplicity, if we were
to project the original game onto a linear function of the u’s, then we would be
trying to optimize the following linear program

min(ǫ)

subject to
ui,j − ua(i, j, k) ≤ ǫ, i, j, k = 1, 2
ui,j − ua(i, j, k) ≥ −ǫ, i, j, k = 1, 2
ǫ, uij ≥ 0, i, j = 1, 2

In this program, the first two constraints correspond to the fact that we
want to bound the utilities for a in the new game above and below by ǫ. From
this, we can get the payoffs in the new game as well as the cost associated with
ignoring the interactions between player a and c. By restructuring a’s payoffs
in terms of the new game, we have effectively removed the directed edge (c, a)
while reducing the impact to the strategy space as much as possible. Since the
number of edges in the graph is polynomial with respect to n, this algorithm
can be applied to all edges in a Graphical Game, and the costs associated with
removing each edge can therefore be computed in polynomial time. Using these,
we can then find the sequence of edges with minimum impact, and cut those
until a maximum ǫ tolerance is reached. It would be important to ensure that
if this algorithm were applied to several edges, then we could specify the ǫ error
in the entire approximated game with respect to the original game.

This algorithm, while representing a potential strategy to reduce computa-
tion in Graphical Games, has a pitfall that is also apparent in Factoring Games.
While we can find the minimum ǫ possible when removing strategic interactions,
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this ǫ may be arbitrarily bad. Since we are projecting from a higher dimensional
action space onto a lower dimensional one, we risk losing important information
that could only be carried in the high dimensional space. A user of this algo-
rithm, or approximate factoring, would not be able to find out what this ǫ is
before running the approximation. Thus, they risk losing valuable computation
if this ǫ is larger than they are willing to tolerate. For example, running this
linear program on the example given above yields the following utilities for a,
with ǫ = 1.5

b1 b2

a1 1.5 1.5
a2 0 0

This illustrates a potential weakness of the approximate factoring approach.
It may be the case, however, that certain classes of games have nice guaranteed
bounds on the maximum ǫ that can be found by removing strategic interactions.
It is also possible that within a game there may be very weak interactions that
will generate a small ǫ. This algorithm may also be useful in simulating agents
with bounded rationality where they are only able to reason about a small
portion of a game, and must ignore other parts that may not be independent.

Should some classes of games be found where this holds, these kinds of
algorithms might represent a new way of approximating games to speed up
computation. Certainly in the algorithm presented, different loss functions and
basis functions could be used that capture as much information as possible in
the reduced dimension. There are many machine learning techniques available
that are designed for this specific task, and it would be interesting to see how
they fare in a multiagent environment. It is also possible that severing edges
in Graphical Games is too restrictive an approach. There may be other ways
of applying similar approximation techniques to compact games which preserve
more information, and are not subject to arbitrary losses.

5 Conclusion

Computing solution concepts in the Normal Form can be a computationally
expensive endeavor. When presented with an unbounded number of agents, the
possible outcomes can grow exponentially, and thus even algorithms that run
linearly in the size of the representation will need exponential time to compute.
Compact representations which seek to exploit structure within a game provide
a simple, and intuitive way to drastically reduce the amount of computation
needed to compute many solution concepts such as Expected Value and Nash
Equilibria.

As an alternative, factoring games seeks to take a Normal Form representa-
tion and break it into subgames which preserve as much information as possible
in terms of strategic interactions in the full game. While certainly interesting,
this approach has a number of drawbacks mostly related to the fact that they
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need to start with a Normal Form representation. In this context, the algo-
rithms presented will still run in exponential time if the number of players is
unbounded.

While it may not be the best approach to try to decompose a Normal Form
game in this way, it may be worthwhile to apply the ideas developed in Factoring
Games to existing compact representations. In this way, existing representations
could be decomposed to simplify computation while still maintaining many of
the strategic properties of the original game. I proposed a decomposition algo-
rithm for Graphical Games which attempts to remove edges between players,
and compensates for the loss of strategic interaction by reformulating the utili-
ties in the new approximate game. I also suggested the possibility that in such
approximation schemes, the approximate versions of the original games might
be arbitrarily bad. Regardless, there may be interesting results in classes of
games where the maximum error could be bounded, and in these cases it would
be interesting to see what kind of computational savings could be made by
applying approximation techniques.
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