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Abstract

The concepts in game theory have been evolving in such a way that
existing theories are recasted to apply to problems that previously ap-
peared not to fit in. One of the most scrutinized concepts is backward
induction. In extensive form games, given common knowledge of ratio-
nality, the outcome is backward induction. However, experiment results
are contradictory from what game theory predicts. Several attempts have
been made in the literature to solve this problem. The present paper
describes and discusses some of those attempts and their limitations.

1 Introduction

The history of game theory has been evolutionary rather than revolutionary -
some of the most important developments consisted of novel ways of recasting
theories to apply to problems that previously appeared not to fit in [2]. One of
the most debatable issues in game theory is rationality. Ironically, rationality
is what game theory is all about; almost all of the theories are based on the
assumption that agents are rational players who strive to maximize their util-
ities. However, economists have long expressed dissatisfaction with the strict
assumption about rationality with several objections. A common objection is
that laboratory experiments indicate that people often fail to conform to some
of the basic assumptions of rational decision theory. Furthermore, experiments
also indicate that the conclusions of rational analysis sometimes fail to conform
to reality. Additionally, the conclusions of rational analysis sometimes seem
unreasonable and counter intuitive even on the basis of simple introspection [3].

1.1 Backward Induction

A game theory concept closely related to rationality is backward induction.
Backward induction is an iterative process for solving extensive form games.
In such games, the player who makes the last move of the game, chooses an
action that maximizes his payoff. Taking this as given, the next-to-last moving
player makes a choice that maximizes his own payoff in his turn. The process
continues in this way backwards in time until the beginning of the game is
reached [4]. Effectively, the subgame perfect equilibrium, in which players’
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strategies constitute a Nash equilibrium in every subgame of the original game
is determined.

Figure 1 shows an extensive form of a well-known finitely repeated prisoner’s
dilemma game with length two. The end of each round of the game is marked
by a dotted line. The payoff to each of the two players is obtained by adding
their payoffs for the two rounds and is listed at the end of each terminal node
the tree. The payoffs are stated in terms of R, S, T and P where they can have
any value with T > R > P > S and 2R > (T + S). Therefore, if we apply
backward induction concept to this twice played prisoner dilemma, the players
should always play D in every round, adopting non-cooperative behaviors.

However, the experiments with human players have shown the contradictory
results; players do cooperate at least for some time until near the end of the
game. In the process, the outcomes end up with payoffs that are strictly greater
than they would obtain under equilibrium play [5]. Therefore, practically and
also intuitively, backward induction is implausible or unreasonable, though it is
a game-theoretically correct concept.

2 Solutions

Since 1980s, economists have explored solution concepts, which can reflect the
reality and explain the observed results of the experiments [5, 2, 3, 4, 7]. In this
section, some explanations or solutions to the backward induction paradox are
described.

2.1 Failure of Common Knowledge of Rationality

One of the most straightforward solution concepts was in recognizing that nei-
ther player is in a position to run the backward induction required [7]. They
claim that it is mistaken to assume that a player is in a position to run these
arguments before making his first move, or having his opponent’s move made.
The mutual belief of rationality of the players can exist, but it does not entitle
the player to believe that in subsequent rounds his opponent will still believe he
is rational, irrespective of how he has acted in the interim. Hence, the premise
about players’ rationality at later rounds is not available. In other words, it
describes the breakdown of the common knowledge of rationality. Common
knowledge of rationality means all players know that they are rational, all know
that all know it, and so on ad infinitum (or at least, for a number of levels no
less than the maximum duration of the game).

2.2 Reputation and Imperfect Information

The approach by [5] attempted to solve the paradox by admitting a “small
amount” of incomplete information, while maintaining rationality of players.
They described equilibrium of the repeated PD in which two rational players
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Figure 1: Twice repeated prisoner’s dilemma

both believe that there is a small probability δ that the other is “irrational.”
Two models of irrationality proposed are as follows:

Model 1: The opponent might be playing a tit-for-tat strategy, in
which a player starts the game by cooperating, and at subsequent
rounds j+1, the player chooses the action that the other player chose
in round j.

Model 2: The opponent may get extra utility from mutual coop-
eration by being an altruistic type, such as cooperation is the best
response to cooperation. Therefore, the utility Ui of a player i with
such reciprocal altruistic type can be described as

Ui = pi+ α

where α ≥ 0 whenever player i and his opponent(s) −i cooperate
and pi being the original payoff of the game for the agent i

In either case, a sufficiently high δ can lead the players to adopt a cooperative
strategy until round T or until the opponent defects and to defect thereafter.
The approach does not require ‘irrationality’ or ‘altruism’ to exist, but only the
sufficient beliefs about such existence. Hence, one can play “irrational” strate-
gies to entertain some doubt about the irrationality or to build the reputation
that he or she is altruistic. By doing so, he or she can motivate the other player
to play in some specific way (e.g., a mutually beneficial way). In other words,
the rational players disguise themselves as irrational; they make others believe
they are altruistic, thus forcing others to play cooperatively. Therefore, this
approach is also well known as “crazy perturbations.”
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Figure 2: Finite Automata for Tit-for-Tat strategy

2.3 Bounded Complexity

Unlike the above two, the solution concept proposed by Neyman justifies coop-
eration in the finitely repeated PD without deviating from rationality or com-
plete information [6]. The fundamental assumption is existence of bounds to
the complexity of the strategies that the players may use.

Theorem 1 states that if the players are restricted to using some mixtures
of pure strategies, which can be represented by finite automata of a fixed size l,
for a sufficiently large number of repetitions N, there exists an equilibrium that
yields a payoff close to the cooperative outcome.

Theorem 1: For any integer k, there is an N0 such that if N > N0

and N1/k ≤ min(l1,l2) ≤ max(l1,l2) ≤ Nk, then there is a (mixed
strategy) equilibrium in which the payoffs to each player are at least
3 - 1/k [6]

Hence, the tit-for-tat strategy can be modeled with the finite automata with
size 2 as the figure 2 shows. In this case, l is only 2, but the theorem remains
true even when the automaton size l is very large compared to N as long as it
satisfies the constraints of the theorem.

3 Discussions

Though the solutions explained the ”irrationality” (at least to some extent),
they made different assumptions of the game model being analyzed. In the
first one, the breakdown of common knowledge of rationality is assumed. In
the second, the informational asymmetries among the players are introduced.
In the final one, the strategies available to players are restricted. The latter
two concepts introduced more formal and specific cases and strategies involving
”irrationality”, while the former one simply gave the reason for cooperation.

The first concept is logical that players are not necessarily in a position
to run the backward induction because the necessary condition or premise of
common knowledge of rationality (CKR) is not fulfilled. However, the concept
is very broad and it can refer to many cases where CKR breaks down (e.g.,
the opponent plays a cooperative action, the opponent is irrational or even the
opponent is disguising himself or herself as irrational). While it is very easy to
point to the failure of CKR and claimed that one has solved the paradox, due to
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the breadth covered by the concept, it is hard to discuss about how to develop or
justify one’s strategies under such circumstances. Moreover, even if the CKR is
fulfilled in the model, it is arguable that players will run the backward induction
because of limits on human memory or computational ability. In other words,
human have the limited foresight - the process of predicting all the possible
future states of a game.

The second concept takes on a very different approach. The game being
analyzed is changed to a different game model, from the extensive form games to
the Bayesian game with uncertainty about the player’s type (and hence utility).
Taking the alternate utilities and the priors of doubts about the opponent’s
irrationality or taking the opportunity to build the reputation of ”altruism”
so that the opponent will cooperate, there is nothing irrational about players
anymore; one can easily develop a strategy to maximize his or her own utility
within the rational concept of game theory. Therefore, irrationality is used just
as one of the strategies. In a way, it goes beyond the basic utility maximization
that is inherent in Nash equilibrium. The concept demands rationality off the
equilibrium path while the Nash equilibrium demands rationality only on the
equilibrium path [3]. The concept has been tested with the experiments and
results have been shown to support the concept [1].

The third concept is very close to human cognition and reasoning, especially
when the game involves numerous and complex strategies. However, if the
game has a simple set of possible strategies and a small number of rounds
left, restricting the strategy solely to the automata might fail to reflect human
behavior.

4 Conclusions

A backward induction concept has limitations in its applicability. Ironically,
the solutions proposed to solve it also have their own limitations. However, it
does not mean that we should discard the concept of backward induction or the
proposed solutions. Though not common in other areas of studies, substantive
conditionals and counterfactuals are necessary in game theory; without those,
one really cannot discuss decision making. Making a decision means choosing
among alternatives. Thus one must consider hypothetical situations. Though
the solution concepts presented do not cover and explain all the possible short-
comings of players’ rationality, they made significant contributions of explaining
irrationality to the game theory which used to be all about rationality.
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