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Abstract

Mobile wireless ad-hoc networks have recently become a popular re-
search topic. They have been successfully deployed by groups such as
the military, in which agents are all cooperative. However, civilian de-
vices that utilize this technology are now becoming affordable and are
very common. Mobile wireless ad-hoc networks can be deployed amongst
them, allowing these devices to communicate data with each other. Be-
cause civilians are agents who want to maximize their own utility, they
can be thought of as non cooperative agents. Without some form of pun-
ishment mechanism, selfish agents will not help in the operation of such
networks and will cause the network to be very inefficient. In mobile
wireless ad-hoc networks (MANETs), nodes must relay packets for other
nodes in order for the ad-hoc network to function properly, but selfish
agents have no incentive to do so. This paper looks at mechanisms that
have been designed to solve these problems with emphasis on how these
systems have been modeled as multi agent systems and how game theory
has been used in each mechanism.

1 Introduction

Mobile wireless ad-hoc networks (MANETs) have gained the interest of many
researchers recently due to advances in technology. Researchers have shown that
selfish agents in a MANET can greatly decrease the performance of the network,
to the point where no messages can be sent at all [3]. Much of the recent litera-
ture in this field has been devoted to coming up with mechanisms and algorithms
which alleviate this problem, allowing MANETs with non-cooperative agents to
maintain high performance. The most researched problem is the forwarding
problem. In MANETs, due to the low power and low range capabilities of the
wireless transmitters, traffic often has to be relayed by at least one other node,
but selfish agents will choose not to forward if no punishment mechanism is im-
plemented. This can be represented as a multi agent system, as will be shown
in later sections.
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This paper discusses several mechanisms with emphasis on how multi agent
systems have been used to model these problems and how game theory has been
used to find ways to alleviate this problem. The following sections describe the
relay problem (section 2), the solutions they have found with emphasis on multi
agent systems and game theory (section 3), and a possible research idea (section
4).

2 Relay Problem

One of the most researched problems in this field is the relay problem. In
MANETs, due to the low power and low range capabilities of the wireless trans-
mitters, traffic often has to be relayed by at least one other node.

This can be viewed as a multi agent system in which each node tries to
maximize its own utility. Because relaying other nodes’ messages consumes
energy, this situation is similar to the prisoner’s dilemma. If all the nodes relay
with a high probability, then the network functions well and nodes have high
utility. However, if a node sets its own relay probability to a high probability,
but other nodes do not, then other nodes have high utility, but the node itself
has low utility. It should also be noted that without any sort of punishment
mechanism, if a node sets its forwarding probability to 0, the utility of the
node will always be higher than if it set its forwarding probability to anything
higher. This is because other nodes do not change their forwarding rates and the
node itself uses less energy. Therefore, a selfish node will never forward in this
situation. If no agent forwards any message, then agents can only communicate
directly with other agents within the range of their low power transmitter, and
the network will not function properly.

3 Mechanisms to Alleviate the Problem

Much of the recent literature on MANETs have concentrated on designing mech-
anisms which solve this problem. The general approach in designing these mech-
anisms is to model the network as a multi agent system. A utility function
is then defined, and mechanisms are designed so that agents who optimizing
this utility function will follow a behavior that allows the network to function
efficiently. The well referenced mechanisms tend to fall into one of three cate-
gories, which are simple punishment mechanisms, reputation mechanisms, and
price mechanisms. The following subsections discuss these mechanisms and how
game theory has been applied to help design mechanisms, evaluate mechanisms,
and also help set variables within the mechanisms.

3.1 Simple Punishment Mechanisms

Using ideas from game theory, simple punishment mechanisms have been de-
signed to solve this problem [1] [6] . Altman et al [1] and Srinivasan et al [6]
attempt to solve this non cooperative game problem by looking at previous work
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done in game theory. Both papers come to the conclusion that tit-for-tat is a
good algorithm that can be used to provide incentives for nodes to cooperate.

The simple mechanism devised in [1] formulates the utility as:

Ui(γ) =
∑

n:(i,n)∈O

λinfi(p(i, n; γ)) +
∑

n:(n,i)∈O

λnigi(p(n, i; γ))− aEfξi(γ) (1)

where i is a node, n : (i, n) is the set of n which i has a path to send a message to,
γ is the probability that nodes will forward packets, λ is the flow rate, fi is the
utility of node i successfully sending a packet, gi is the utility of i successfully
receiving a packet, p(s, d; γ) is the probability that node d receives a packet
from node s, and Ef is the energy required to forward a packet. The main idea
is that the first term on the right hand side represents the utility received for
successfully sending messages. The second term represents the utility received
for successfully receiving a message, and the last term is the disutility caused
by the lose of energy due to message forwarding.

Using this utility function, a Nash equilibrium is a strategy where for all
agents follow one of the strategies that satisfy

γ∗ = argmaxγ
′
i
Ui(γ

′

i , γ
−i) (2)

Altman et al [1] defines a special tit-for-tat strategy in an attempt to get
nodes to cooperate and finds properties of the Nash equilibriums under this
strategy. The strategy is for all nodes to decrease their own forwarding proba-
bility to the minimum forwarding probability amongst all nodes. In other words,
if all nodes originally forwarded packets at a rate of γ, and then one node de-
cides to forward at γ

′
< γ, then all the other nodes will react by setting their

forwarding probability to γ
′
to punish that node.

In the original mechanism without punishment, γ = 0 is a dominant strategy
because other agents’ forwarding probabilities are independent of the node’s
own probability. In this new mechanism, γ = 0 is still always an equilibrium,
but there are also other equilibria. It is still an equilibrium because if other
nodes do not forward, then it is obviously in a node’s best interest to also
conserve its own energy and not forward. Note that γ can be much higher
than 0 in the case where the amount of energy required to forward packets,
aEf , and the number of hops required for a message to be sent, L, are both
small. Intuitively, this is because low aEf and low L values mean forwarding
messages is relatively cheap. Therefore, increasing the forwarding probability
only increases the third term of equation 1 slightly but increases the first 2
terms greatly since fi and gi will both increase. However, as either L or aEf

increases, the cost of forwarding messages increase and the equilibrium γ will
fall. γ approaches 0 as L or aEf approach infinity, which degenerates it back
to the case of not having a punishment mechanism.

The tit-for-tat mechanisms suffers from problems because it is overly simple
and only sets a universal forwarding rate instead of setting one for each node.
As shown in the previous section, a forwarding probability of 0 is always a
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equilibrium, which means that the mechanism does not always converge to a
good point. It should also be noted that in real life, there are likely to be agents
(nodes) who are either malicious or faulty. Under this mechanism, such nodes
will bring equilibrium to 0 and thus make the network inefficent.

3.2 Reputation Mechanisms

Reputation mechanisms define a method for keeping track of a node’s history
by monitoring the node’s past actions, and then uses this history in order to
decide whether or not to forward packets for that node [2] [5]. This is basically a
more complicated punishment system in which each node is tracked separately
and punished only based on its own previous actions.

One of the most referenced reputation mechanisms is CORE [5], which stands
for a collaborative reputation mechanism to enforce node cooperation in mobile
ad hoc networks. The general idea behind CORE is that each node keeps track
of a reputation table, in which the reputation of a node is decreased whenever
a node does not forward a packet, and is increased whenever it does. When a
request for relaying a packet arrives at a node, the node forwards if the requester
has a positive reputation, and refuses otherwise.

There has been research on how to evaluate mechanisms such as this one
using a game theoretical approach. Specifically, Michiardi et al [4] does this
for CORE. In the non-cooperative case, [4] formulates a utility function for the
nodes, which is

uni(bi, bj) = Eself ∗ (1− bi) ∗ rni − bi ∗ f ∗ (ER + EPF ) (3)

where Eself is the amount of energy a node spends for its own communication,
ER is the amount of energy spent due to participation in the protocol, EPF is
the amount of energy spent relaying packets, bi is the ratio of the energy node i
spends for relaying and participation in the protocol to the total energy spent,
f is just a multiplication factor, and rni

is the reputation of node i according
to its neighbors. [4] put the rni

term on the second term in equation 3, but
I believe it was a mistake and he actually meant to put it on the first term
as shown. My reasoning is that reputation affects the amount of utility an
agent gains by putting a certain amount of energy into sending messages, since
high reputation means all the packets sent with that energy will get forwarded,
while low reputation means only a small amount of packets will get to their
destination.

Rather than using a mathematical proof, [4] graphs a selfish node’s optimal
behavior and shows that the equilibrium behavior approaches using half of its
energy for its own communication and using the other half for relaying and
supporting the protocol. The explanation for this behavior is that the selfish
node starts off with neutral reputation. Thus, it can maximize its own utility by
not relaying until its reputation has decreased enough to effect the forwarding
rate for it greatly. From the formula, it can be seen that as rni drops, the first
term in equation 3 drops and thus the node starts cooperating by spending more
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than half of its energy forwarding and communicating in the protocol. When
its reputation is high, it will spend more energy on its own communication.
When bi is graphed against time, this results in a sinusoid wave centered around
bi = 0.5 and decreasing in magnitude over time. In other words, this settles to
the equilibrium previously stated over time.

3.3 Price Mechanisms

Another approach to solving this problem is the implementation of pricing mech-
anisms. In these mechanisms, money is charged to nodes that cause traffic and
money is given to nodes that help forward packets. One well referenced mecha-
nism that does this is SPRITE [7]. This mechanism not only uses game theory
to describe node’s behaviors, but it also models reporting payments as another
multi agent game and uses game theory to help decide how to set the payments.

In SPIRTE, there is a central Credit Clearance Service (CCS) which the
mobile nodes can send receipts to when they are connected to a fast network,
such as through a broadband connection at home computer. In this system, the
destination and any node that forwards a message keep receipts for the message,
and give these receipts to the CCS in exchange for money. If a message gets
from the sender to the destination, then all nodes that forwarded the packet
receive a payment of α and the destination node receives β. The sender has to
pay a total of (n∗α+β), where n is the number of nodes from the source to the
destination. The amount the sender pays is the amount that the other nodes
receive, so this is budget balanced in the case where the message successfully
arrives. However, if the message does not get to the destination, then each
node that forwarded the message gets γ ∗ α, and the last node to receive the
message (the last node to send a receipt) gets γ ∗ β, and the sender has to pay
n ∗α + β− 2 ∗ γ ∗ β). Note that γ is a number less than 1, and its purpose is to
make nodes receive less money if the message does not get to the destination,
therefore providing more incentive for nodes to forward and prevents cheating.
Note also that β is less than α in order to make it more profitable for a node to
forward a message and receive α instead of not forwarding and receiving β.

One important part of this mechanism is deciding on the right numbers.
The paper analyzes whether nodes will tell the truth by modeling the decision
as a game. Consider a game where there are d players, each of which is on
the forwarding path of the message, and each player has two available actions,
which is to either send the receipt, or not send the receipt. Consider a message
sent by node s to node d that reaches only node e. According to the SPRITE
algorithm, the payment function is

Pi =


α i < e = d
β i = e = d
γ ∗ α i < e < d
γ ∗ β i = e < d

(4)

If a node is e or is between node s and node e, then they receive Pi by telling
the truth and sending the receipt, or receive 0 otherwise. Therefore, telling the
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truth is obviously the dominant strategy.
Consider the case where nodes collude. If a node c between e and the

destination wants to receive a payment, a node in between nodes s and e must
send the receipt to c. The receipt is smaller than the full message, but will still
incur a forwarding cost δ to the forwarding node. Therefore, c must compensate
the node forwarding the receipt by δ, so the total amount of money c will receive
is Pi−δ. Since it is the new last node, its Pi will be γ ∗β. Therefore, if δ ≥ γ ∗β,
then Pi − δ will be negative. Therefore, truth telling is dominant, and this is
the way the numbers in the mechanism should be set.

An interesting thing to note is that in this proof, the paper assumes that
when agents collude, it will cost an agent δ to send the receipt to another agent.
However, if agents need some external connection to connect to a central server
periodically to send receipts, then I believe nodes can also set up some automatic
mechanism to trade receipts at virtually no cost right before sending receipts to
the central server. It will be in a node’s best interest to do this when they are
saving battery power and would not have forwarded anyways. This will modify
the equilibrium reached under this mechanism in a negative way.

However, even with the truth telling properties of this algorithm, the amount
of messages that get from source to destination still depends on the properties
of the nodes themselves, such as whether or not they want to be credit balanced.
Like the analysis of CORE presented in [6], Zhong et al [7] plots success rate,
which is the ratio of messages that successfully reach destination to the total
number of messages on a graph. The graph shows that for agents who want
to maximize the total amount of messages sent while sending them as early as
possible, the success rate approaches 1 as the battery life of the nodes increases.

4 Further Research

Attempts have been made to create game theoretic frameworks for designing and
analyzing mechanisms, but they do not seem to fit much of the current research
and have not gained popularity. I believe it would be very useful if researchers
develop a standard set of tests using agents with different preferences for energy
conservation and different preferences for money if applicable. These can be
used to evaluate mechanisms to produce comparable results.

5 Conclusion

This paper has looked at MANETs in the non cooperative environment. It
has described some recent research in this field and looked at how multi agent
systems have been used to model these networks. It has also looked at how
game theory has been used to help in both the design and analysis of these
mechanisms.
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