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ABSTRACT
We examine the problem of designing a strategy-proof auction in
an online setting. This means that agents can arrive and depart dy-
namically. Thus, the auction mechanism must be able to decide on
the optimal allocation of goods based only on bid information from
the agents that have already arrived and not on future arrivals. If a
good is to be allocated to an agent, the mechanism must do so be-
fore that agent departs. We compare two different solutions to the
limited supply online auction problem, each with its own set of as-
sumptions and problem specific criteria. In conducting our survey,
we note the emerging importance of comparing a mechanism’s per-
formance in terms of revenue and efficiency by comparing it to the
optimal revenue and efficiency. This emphasis on an algorithmic
approach to mechanism design has been denoted as competitive
analysis. We conclude our review of online mechanism design by
discussing the important avenues for future work.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity; J.4 [Computer Applications]: Social and Be-
havioural Sciences—Economics

General Terms
Algorithms, Design, Economics, Performance

Keywords
Online auction, competitive analysis, incentive compatibility, strategy-
proof

1. INTRODUCTION
Mechanism design (MD) is concerned with creating rules to en-

force specific outcomes within a system of rational and self-interested
agents. The classic MD setting is static in that the mechanism
makes a single decision in determining the outcome for the sys-
tem and all agents are present throughout the process. In online
mechanism design we consider the same problem but allow agents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
Best Conference Ever’05 Vancouver, British Columbia CA
Copyright 2005 Steven Gao.

to arrive and depart dynamically [1]. The mechanism must deter-
mine the optimal outcome based on the information limited to only
those agents that it has observed up to the current point in time.
In other words, the mechanism does not know the preferences of
agents that will arrive in the future and it must decide whether to
satisfy each bid as the requests are received in real time.

In this paper we examine a subset of mechanisms, known as auc-
tions, in an online situation. In essence, auctions are mechanisms
where the final outcome is an allocation of a set of resources to a
subset of the agents in the system. The interaction within the sys-
tem is between an auctioneer (seller) and a set of agents (bidders).
As Lavi and Nisan point out in [2], an online auction problem is a
contrast to the traditional offline environment where the auctioneer
receivesall bids before generating a set of allocations. The offline
setting implies that all agents, as well as the auctioneer, must wait a
given amount of time before the transaction can take place. At the
end of the waiting period the mechanism performs batch processing
on the entire set of bids at once.

The motivation behind studying online auctions is quite evident.
Auction design has quickly gained prominence in computer science
particularly in the areas such as electronic commerce (e.g. auctions
on eBay, electronic catalogues on Amazon), computer and network
resource allocation (e.g. network bandwidth allocation), and trad-
ing between software agents [2, 3, 4, 5]. These settings are best
modeled dynamically since agents enter and depart in a constant
stream. In addition, players in the auction are not willing to wait
very long for a result [2].

In this paper, we survey work done by Lavi and Nisan [2], Awer-
buch et al. [6], Friedman and Parkes [7], and Hajiaghayi et al. [8]
on designing limited-supply online auctions. We will attempt to
aggregate the analysis done by each of the authors and then sum-
marize the main issues involved in designing a generalized online
auction.

In the remainder of this section we discuss research that has con-
tributed to online mechanism design, but is either not directly re-
lated to online auction design or could not be included due to space
restrictions. In section 2, we formally define an online auction and
review some useful terminology. In section 3, we discuss in detail
the current work done on designing strategy-proof online auctions
for a limited-supply good. In Section 4, we address our contribution
to the online mechanism design problem which is to summarize the
requirements for a generalized online auction. Finally, in section 5
we conclude with some remarks regarding the direction that online
mechanism design is headed.

1.1 Related Work
In addition to the research results we examine in section 3, the

following papers may be of interested to those readers who want
a broader perspective on online auction design. Common issues



that are addressed in the papers below are incentive compatibility
(or truthfulness), auction competitiveness (amount of revenue pro-
duced), the amount of supply of the good being sold (bounded or
unbounded), and the distribution over which agent valuations are
drawn (known or unknown distribution to the mechanism).

In [3] Goldberg et al. attempt to design truthful competitive
mechanisms for the single round, sealed bid auction for an item
with unlimited supply. Unlimited supplies means the seller can
create additional copies of the good at negligible marginal cost.
Such auctions can be applicable to real life when selling a digi-
tal good, i.e. books, music, videos, and software in downloadable
form [3]. They restrict their attention to situations where each agent
only wants a single copy of the good. This condition is also known
asunit-demand.

Although Goldberg et al. consider offline mechanisms their work
is important to the online MD problem because it is the first to ana-
lyze auctions in terms of their competitiveness. An auction (online
or offline) iscompetitiveif it produces revenue that is within a con-
stant factor of the offlineoptimal fixed price revenue. We define this
formally in section 2. As stated in [3], expressing an online auc-
tion’s performance in terms of a benchmark offline auction is sim-
ilar to competitive analysis of online algorithms within computer
science, where an online algorithm’s performance is compared to
the that of the optimal offline algorithm. Such an analysis of an
auction is rigorous because it provides theoretical guarantees on
the revenue from that auction. The revenue generated by an offline
optimal fixed price auction acts as ultimate goal that all online auc-
tions should strive to achieve. They also extend their analysis to a
bounded (or limited) supply auction and show that their definition
of competitiveness still holds. In fact, the bounded supply case is
a generalization of the unlimited supply case, because we can use
the former to derive the latter by setting the number of goods equal
to the number agents. Goldberg et al. examine single- and multi-
priced auctions and argue for the use of a randomized sampling
auction instead of a deterministic one in order to achieve compet-
itiveness. Among the papers we examine in section 3, [2, 6, 8] all
use a competitive analysis technique similar to that defined in [3],
either as a direct result of Goldberg et al. or in parallel.

In [9], Bar-Yossef et al. directly extend the work of Goldberg
et al. by considering the same auctions in an online setting. They
present a randomized auction which is within a factorO(e

√
loglogh)

of the benchmark optimal offline auction, whereh is the ratio be-
tween highest and lowest bid values. They point out some key dif-
ferences between their online unbounded auction and an online lim-
ited supply auction [2]. Firstly, in a limited supply auction selling
a good to the current agent means that it cannot be sold to a future
agent. Thus, a competitive mechanism must somehow balance the
revenue gained with lost potential revenue. This is usually handled
being assuming non-decreasing prices. This is not a consideration
in the unbound supply case. Secondly, Lavi and Nisan use the of-
fline Vickrey auction as their benchmark for comparing their online
auction in [2], but Goldberg et al. show that it is not competitive in
the unbound supply case.

Bagchi et al. [5] also consider an online limited supply auc-
tion from an online algorithmic standpoint, but focus on defining
optimal strategies for the seller. Their motivation is that many on
auction websites (e.g. eBay, uBid) sellers do not use good pricing
models and thus lose revenue as a result. The paper shows that
a deterministic auction cannot possibly perform within a constant
factor of the optimal offline auction, meaning it is not competitive.
Thus, a randomized auction is necessary. However, they focus too
much on algorithmic design and neglect the importance of making
an their mechanism incentive compatible.

Awerbuch et al. [6] use Lavi and Nisan’s adversarial model, but
their main goal is to bridge the gap between online algorithms and
online mechanisms. They describe a method to convert any com-
petitive online algorithm (i.e. without game theoretic considera-
tions) into an online truth-telling mechanism that is strategy-proof
in terms of agent valuations. Specifically they derive a total profit
that is different from the optimum profit by a bound ofO(p+logµ).
The optimum profit is produced by an offline algorithm that knows
the true valuations of each agent.

Finally, Gallien [4] examines a limited-supply online model where
the goal to is to maximize the expected discounted revenue by sell-
ing identical goods to self-interested, time-sensitive agents with
unit-demand. He assumes that valuations and arrival-departure times
are drawn uniformly from aknowndistribution. He designs a se-
ries of strategy-proof mechanisms by. What is interesting is that
Gallien’s work is done completely separate from the other papers
we examine here. In other words there are no common citations
between his work and the work of the other research groups we
consider. In fact, Gallien uses the termdynamicmechanism design
to denote the study of online mechanisms. Under the assumptions
that the mechanism is stable and is based on discrete time, Gallien
derives a strategy-proof mechanismDP by turning the mechanism
design problem into one centered on dynamic programming.

2. BACKGROUND
In this section we define the formal notation that will be used

throughout the rest of the paper as well as desirable properties that
we want an online mechanism to have. The notation and properties
are presented in a generic fashion so that they may be used for all
of the mechanisms we discuss later.

2.1 Formal Definitions
We first define a quasi-linear mechanism and a direct revelation

mechanism, since these are important to both offline and online
auctions. We then define the class of online mechanisms that we
are interested in. Given a set of agentsI = {1, 2, ..., n}, a set of
outcomesO = X ×<n, where X is some finite set of choices, and
a set of strategy spaces for the agentsS = S1 × ...× Sn:

DEFINITION 1. A quasi-linear mechanism overI andO is de-
fined asM(q, p, S) whereq : S → X is the choice rule, such that
q(s) ∈ X is the choice implemented for strategys = (s1 × ... ×
sn), p : S → <n is the payment rule, such thatpi(s) ∈ < is the
payment made byi, andS is the strategy space for all agents.

To clarify the payment rule can be divided inton payment rules,
one for each agent. In the case of an auction, the set of choicesX
is simply the set of goods that the seller (auctioneer) is selling. Let
|X| = k be the number of goods available for sale.

The actions an agenti can take within the mechanism are defined
completely by its strategy spaceSi. However, based on therevela-
tion principle [10, 8] we only need to consider adirect revelation
mechanism:

DEFINITION 2. A direct revelation mechanism (DRM) is a mech-
anismM(q, p, S), where the agent’s strategy space consists only of
disclosing its typeSi = Θi and the choice ruleq : Θ → X se-
lects an choiceq(θ̂) ∈ X based on the reported types of the agents
θ̂ = (θ1 × ...× θn).

Thus, within a DRM an agenti’s strategy involves either reveal-
ing its true typeθi, which representsi’s real preferences, and a
false typeθ̂i 6= θi ∈ Θi. The revelation principle states any so-
cial choice function mapping agent types to outcomes that can be



implemented by some mechanism in dominant strategies can also
be implemented by a direct revelation mechanism that is truthful.
Hence, from this point on, we will only look at implementing direct
revelation mechanisms and discuss agent strategies only in terms of
their types. The specific type space for an agenti is θi ∈ Θ.

We use a quasi-linear utility function to define the payoffs for
each agent. So, an agenti’s utility is ui(θ̂) = vi(q(θ̂i, ˆθ−i)) −
pi(θ̂i, θ̂−i), whereθ̂−i is the declared types of all agents other than
i, vi(q(θ̂i, θ̂−i)) is i’s true valuation for some allocation outcome
q of thek goods, andpi(θ̂i, θ̂−i) is the payment thati makes given
all reported typeŝθ. Note that the type profile can be written as
θ̂ = (θ̂i, θ̂−i).

For a classic direct revelation mechanism, the type of agenti is
simply the set of possible valuationsi can have for the outcomes
(goods). However, in the online setting we have:

DEFINITION 3. An online mechanism overI andO is defined
as a direct revelation mechanismM(q, p, Θ) whereq and p are
defined as before, andΘ = Θ1 × ... × Θn is the type space for
all agents, where the type for agenti is a triple defined asθi =
(vi, ai, di), such thatvi ∈ < is i’s true valuation for a set of goods,
ai ∈ [0, T ] is i’s arrival time, anddi ∈ [ai, T ] is i’s departure time.

Only i knows its true typeθi. Given the reported typeŝθ =

(θ̂1, ..., θ̂n) by each agent the mechanism produces an allocation
qi(t, θ̂) at time0 ≤ t ≤ T and a paymentpi(θ̂) for all i. Here
qi(t, θ̂) is the number of items allocated toi (i.e. 0 or 1) andpi(θ̂)
is the payment fori at its departure timedi.

We assume throughout this paper that agents are rational and
seek to maximize their expected utility.

2.2 Mechanism Properties
We start by defining a dominant strategy (DS) for a playeri:

DEFINITION 4. A strategyθ̂i for agenti is a dominant strat-
egy if given its true typeθi and all possible strategies for the other
agents,

ui(θ̂i, θ̂−i, θi) ≥ ui(θ̂
′
i, ˆθ−i, θi), θ̂

′
i 6= θ̂i ∈ Θi, θ−i ∈ Θ−i (1)

whereui is i’s expected utility.

A dominant strategy maximizesi’s expected utility regardless of
the strategies (reported types) being played by everyone else. A DS
equilibrium occurs when all agents are playing a dominant strategy.
Compared to the Nash and Bayes-Nash equilibrium concepts dom-
inant strategy is the most desirable, since it makes no assumptions
about the information agents have about each other (e.g. perfect in-
formation and common knowledge about each other’s preferences).
Thus, we are interested in designing mechanisms that implement a
dominant strategy equilibrium. This leads to the following defini-
tion of strategy-proof(SP) as defined in [8]:

DEFINITION 5. A mechanismM(q, p, Θ) is strategy-proof if
given any agenti with true typeθi and any type vector of the re-
maining agents’ typesθ−i it is a dominant strategy fori to play
θi.

A mechanism that is SP is also known as atruthful implementa-
tion in dominant strategies, or is simply stated to beincentive com-
patible. Incentive compatibility is important because it guarantees
that a player will receive maximum expected utility by revealing its
type truthfully. This removes the need for players to consider any

strategy other than the truthful one, an important issue in comput-
erized settings, where it may be computationally intractable for a
software agent to consider all possible strategies [2].

Revenue is defined as

Rev(θ̂) =
X
i∈I

pi(θ̂). (2)

It is the sum of the payments that each agent gives to the auctioneer
based on some allocationq. Thus, revenue is the expected utility of
the auctioneer.

For competitive analysis, Goldberg et al. [3] introduce three im-
portant values which we adopt. We define the total utilityT as the
sum of all agent utilities. This is the upper bound on the revenue
that a mechanism can generate. Goldberg et al. observe that this
is also the revenue that an optimal untruthful multi-price auction
would achieve by satisfying all agent requests at their reported bid
values. A multi-price auction sells each copy of the good at a dif-
ferent price. Next, we defineF as the revenue produced by selling
each copy of the good at an optimal fixed price. This is also the
revenue generated by an optimal untruthful single-price auction.
Finally, we defineh as the highest bid value. This will be used
to derive lower bound estimates for the mechanisms that we look
at. Goldberg et al. show thatF ≥ T

2 lg h
. This can also be stated

asF is within a factor ofΩ(2 lg h) away fromT , which restricts
the penalty on revenue for using a single-price auction instead of a
multi-price one [3].

We define the efficiency of an allocation as

Eff(θ̂) = max
X

i

qi(θ̂)vi. (3)

This is the maximal sum of the valuations of all agents.
We use the definition of competitive ratio defined by Lavi and

Nisan in [2]. Namely, a mechanism isc-competitivewith respect to
revenue (relative to the Vickrey auction) if for any type profileθ̂ it
generates a revenue value that is at least1

c
of the revenue produced

by the offline Vickrey auction using the same inputθ̂.

3. THE LIMITED SUPPLY ONLINE AUC-
TION

In this section we take a more in-depth look at online mecha-
nisms from [8, 2], where the authors tackle a limited-supply on-
line auction problem, such that the auctioneer is limited to selling
k identical items. The reason for comparing these two papers is
because they both address the specific auction setting of interest,
where [2] is a much cited early attempt at designing a limited sup-
ply online auction and [8] is a more recent attempt that tries to
make less assumptions. We discuss the problem setting for each
paper, which is slightly different than the other, followed by the
main results, and finally some remarks about the advantages and
disadvantages of their design.

3.1 Incentive Compatible Online Auction
Lavi and Nisan [2] study the online problem in terms of incentive

compatibility and competitiveness. The mechanism has an adver-
sary who specifies a set of valuations and a set of arrival-departure
time intervals and then randomly assigns valuations to the time in-
tervals for each agent. The mechanism must decide whether to
allocate goods or not for each bid as soon as the bid is submitted.
Lavi and Nisan use the Vickrey offline auction as a comparison
tool to derive a competitive ratio for their mechanism. They also
argue for using a worst-case analysis of the generate revenue in-
stead of average-case, as is the standard practice in auction theory.



The motivation is that as auction theory is increasingly applied to
computer science domains worst-case bounds provide a stronger
guarantee than average-case bounds. This is especially important
in situations when the theoretical average-case analysis does not
produce the same distribution of results as real world observations.

3.1.1 Problem Formulation
They examined a setting withk identical indivisible goods, with

the distinction that ask gets very large, they treat the group of
goods as a single divisible good, i.e.k is a continuum. Each agent
can request up tom copies of the good. The valuation of a good
for each agenti is drawn from a range[p...p], wherep also rep-
resents the seller’s reservation price. Each agent i’s valuationvi

is private information. Because an agent can request more than
one copy of the good, the paper defines the marginal valuation for
agent i asvi(q), whereq is theq-th good. It is assumed in [2] that
marginal valuations are non-increasing, i.e.∀ivi(q + 1) ≤ vi(q).
It is pointed out that this is a necessary assumption that was also
made in Vickrey’s original paper proposing the Vickrey auction.

When the online auction begins the auctioneer does not know the
number of agents, each agent has not been assigned a valuation. At
some timeti agenti learns its valuation and must declare its bid
right away. As explained earlier we only need to consider DRMs,
thus an agent’s strategy consists only of declaring it marginal val-
uation for an additional good. An agent’s bid is then defined by a
function vi : [1...k] → R. Upon receiving a bid, the auctioneer
must respond to that request before it can move on to the next bid.
The auctioneer responds to an agenti by determining the quantity
to allocate toi as well as the amounti must pay.

Lavi and Nisan define revenue as we have in section 2, except
that they add in the marginal valuation of any remaining unsold
goods using the reservation pricep. They also include the utility of
the auctioneer in their formulation of efficiency.

3.1.2 Main Results
Lavi and Nisan define online auctions in terms of supply curves.

Namely:

DEFINITION 6. An online auction is ”based on supply curves”
if for the i-th request̂vi(q), the mechanism generates a supply
curvepi(q) based on all previous requests, as well as,
(1) the quantity sold toi is qi = argmaxq

Pq
j=1 v̂i(j)− pi(j)

and
(2) thei pays

Pqi
j=1 pi(j).

An important assumption they make throughout is that the sup-
ply curvespi(q) are non-decreasing. On the other hand, the curve
representingi’s marginal valuation for an additional good is non-
increasing. Thus, if we graph the two curvesqi is the maximum
value such that̂vi(q) is at least equal topi(q). Note also, that we
can expressi’s expected utility in the more standard formui(q) =Pqi

j=1 v̂i(j)−Pi, wherePi =
Pqi

j=1 pi(j) in the discrete case and
Pi =

R qi

0
pi(q)dq in the continuous case.

Using the above definition of an online auction, Lavi and Nisan
prove the following theorem:

THEOREM 1. An online auction is incentive compatible if and
only if it is based on supply curves.

PROOF. If we have an online auction that is based on supply
curves, then based on the first condition of the supply curve defini-
tion the quantityqi sold to agenti will be the one that maximizesPq

j=1 v̂i(j)− pi(j) which isi’s expected utility. Then agenti will
have no choice but to disclose its true valuationvi(q). Thus, the

auction is incentive compatible. For the converse, if an online auc-
tion is incentive compatible it must be the case that for an agenti
its total paymentPi(q) is uniquely determined byq. If not, then
supposedi has two different valuationsvi(q), v̂i(q) that are based
on the same allocated quantity, but produce two different total pay-
mentsPi, P̂i respectively. Herevi(q) is i’s true valuation. As-
sumingPi ≥ P̂i, i will get more utility by declaring the untruthful
valuationv̂i(q). This contradicts the original assumption that the
auction is incentive compatible. So given that the total payment is
uniquely determined, using the definition of the supply curve we
can determine the price for each of theq goods thati receives by
usingpi(j) = pi(j)− pi(j− 1) for j = 1...q. This means that the
total price and total quantity sold toi is determined by the supply
curve. If not, then suppose thatqi is the amount that maximizesi’s
utility and it is allocate for a bid value of̂vi(q). Also suppose that
for i’s true valuationvi(q) the auction allocates some suboptimal
quantity q̂. Theni would want to declare the bid value instead of
its true valuation. This contradicts the assumption that the auction
is incentive compatible.

Lavi and Nisan derive online mechanism called the Competitive
Online Auction (COA) based on the above theorem. They define an
online auction as based on a ”global supply curvep(q)” it is based
on supply curves defined before and ifpi(q) = p(q +

Pi−1
j=1 qj),

such thatqj is the quantity sold thej-th bidder. This means that
the auction usespi(q) as the supply curve for thei-th bidder. They
present the competitiveness of the COA as the following theorem:

THEOREM 2. Let φ = p
p

. Then the COA is c-competitive in

terms of revenue and social efficiency relative to the Vickrey offline
auction. Furthermore no other online auction can have a better
competitive ratio in terms of revenue and social efficiency. For a
randomized auctionc = Θ(ln φ). For a deterministic auctionc =
√

φ whenk = 1, andφ
1

k+1 ≤ c ≤ kφ
1

k+1 for k ≥ 1.

3.2 Adaptive Online Auction
Hajiaghayi et al. [8] look at a very similar formulation but allow

agents to make much broader declarations regarding their valuation
v̂i, arrival timeâi, and departure timêdi. The only restriction on
declaration is that̂ai ≥ aiandd̂i ≥ âi. This means that an agent
i cannot announce an arrival that isearlier than i’s actual arrival
time. It is obvious that in a real situation this assumption holds
because an agent cannot disclose anything to the mechanism if it
has not even arrived yet.

The seller derives no utility from keeping a good. Also, an agent
i receives no utility from being allocated a good outside of its time
interval [ai, di]. The valuations are sampled from an independent
and identical distribution (i.i.d.), but can be drawn from a distribu-
tion that is either known or unknown to the seller. Hajiaghayi et al.
basically divides the problem into two cases: (1) fork = 1, and
(2) k > 1. The key contribution of [8] is that it is the first paper to
formally address the limited supply online auction problem with-
out assuming anything about the distribution that agent valuations
are sampled from, and given this, provide a mechanism that has
constant-competitive efficiency and time-SP.

3.2.1 Problem Formulation
The problem formulation is exactly as described in section 2 ex-

cept with the following additional assumptions. The mechanism
knows the number of agentsn, and the time-horizon, which is
[0, T ]. Each agenti can demand any number of items, wherei
is drawn from some unknown, fixed distributionΦ. So i gets its



value at timeai and needs a decision regarding whether the seller
will allocate a good toi by timedi.

They assumeindividual rationality, also known asvoluntary par-
ticipation, andno deficitfor their mechanisms. Voluntary participa-
tion statespi(θ̂) = 0, if qi(θ̂) = 0 andpi(θ̂) ≤ v̂i. In other words,
each agenti will have a payment of zero if it has not been allocated
any goods at the end of the auction. Thus,i’s expected utility for
participating in the auction is at least equal toi’s expected utility
outside the auction. No deficit simply means that,pi(θ̂) ≥ 0.

Following the competitive analysis done by Lavi and Nisan [2],
Hajiaghayi et al. use the offline Vickrey auction as a benchmark.

They define Vickrey efficiency as

Effv =
X
i≤k

v(i). (4)

Herev(m) is them-th highest bid for a copy of the good. Essen-
tially, for efficiency the Vickrey auction attempts to allocate each
copy of the good with the agent that has the highest remaining valu-
ation. By remaining we mean the highest valuation given that some
agentsj may have had a higher evaluation but have either dropped
out of the auction or are no longer interested (because they already
have the desired number of copies of the good).

3.2.2 Main Results
They solved thek = 1 case be dividing into into a number of

different situations. In the first situation none of the agents have
arrive-departure time intervals that overlap. In other words, there
are not two agents that are present at the auction at the same time. In
this situation, Hajiaghayi et al. note that the problem is very similar
to the well-known secretary problem, where a secretary must inter-
view n different candidates in order to hire the best possible em-
ployee. The difficulty arises because the candidates have disjoint
arrival-departure times and on top of that the secretary cannot call
back candidates after they have left. In other words, the secretary
can only choose the current candidate. All previously interviewed
candidates are no longer accessible, and all candidates in the future
can only be chosen when they arrive. The common difficulty within
these two problems is that the mechanism must attempt to choose
the optimal agent without having evaluated all the agents.

The general solution to the secretary problem is to interview the
initial t − 1 applicants, record the best ”reference candidate” out
of this pool, and then hire the first applicant out of the remaining
pool that is better than the reference candidate. As noted in [8] as
n →∞ the ratio t

n
approaches1

e
. We offer a simple proof for this

result:

PROOF. Consider that then candidates arrive in a sequence1, ..., n.
Let us divide the sequence into two pools where the first pool con-
tainsm agents that were interviewed and the second pool contains
the remainingn−m candidates that have not been interviewed. The
secretary can potentially select a suboptimal candidate in two ways:
(1) the best candidate was in the first pool, and (2) the best candi-
date was after an individual that also beat the reference candidate
from the first pool. Then the probability for the secretary to succeed
is P = P (m + 1 is the best) + P (m + 2 is the best) + P (m + 3
is the best) + ... + P (n is the best), whereP (m + 1) = 1

n
,

P (m+2) = m
m+1

× 1
n

, P (m+3) = m
m+2

× 1
n

,...,P (n) = m
n−1

× 1
n

.
Thus,P = m

n
×( 1

m
× 1

m+1
× ...× 1

n−1
). For largen, P converges

to 1
e

= 0.368.

Thus, approximatelyn
e

candidates should be processed before
the best one should be considered. For the situation where the
arrival-departure times are completely disjoint a mechanism using

the above procedure should allow roughlyn
e

agents to pass before
setting a reservation price equal to the highest valuation among
those agents. This will result in a SP mechanism because each
agent is presented with a price that was not dependent on its valua-
tion and the price does not change while the agent is in the auction.
Although the auction setting provides more information than the
secretary problem, namely we know the individual bid values of
agents in addition to their ordering, Hajiaghayi et al. derived lower
bounds on efficiency (2) and revenue (1.5) using the secretary prob-
lem solution.

For the multi-item case (k > 1), designing a mechanism that
is constant competitive ask → ∞ is much harder. Hajiaghayi et
al. first point out that it is trivial to achieve an auction in this setting
with ek-competitiveness in terms of efficiency and4k-competitiveness
in terms of revenue by simply discardingk − 1 goods and per-
forming a single item auction, which degenerates to considering
thek = 1 case. In the general case they claim to use a modified
version of the DSOT auction described by Goldberg et al. in [3].
Note that we did not find an auction in [3] that was denoted as
DSOT, so we assume they are using dual-price sampling optimal
threshold (DOS) auction. They create a mechanismRM ′

k that
is c-competitive with the offline Vickrey auction, whereC < 48.
Their proof of its correctness can be found in [8] and is very similar
to that of DOS in [3].

4. COMPARING AUCTIONS
In [2] the number of agents is unknown at the beginning and is

something the auctioneer knows only at the end. This is in contrast
to Hajiaghayi et al. [8] who assume that their mechanism knows
the total number of agents that will eventually pass through the
system. Lavi and Nisan denote an auction with this assumption as
apartially onlinemodel because it reduces the online nature of the
situation. In most real life applications especially electronic com-
merce the number of participating buyers is unknown. However,
the model that Lavi and Nisan present has its own disadvantage be-
cause it restricts the strategy space of the agents. Specifically, each
agenti is forced to disclose its type to the mechanism at its actual
arrival timeai. Although their mechanism still allows agents to
declare false valuationsvi, this is only one of the possible ways
that agents in an online setting can be dishonest. Remember that
an agenti’s reported type also includeŝai and d̂i. Hajiaghayi et
al. examine a broader strategy space by allowing agents to delay
reporting their arrival or declare that they are leaving earlier than
they really are. In their closing remarks Lavi and Nisan do attempt
to improve their model with a set of modifications that include al-
lowing an agenti to delay its bid for some timet ≥ ai, place any
number of bids at times following its arrivalai, or to givei a non-
increasing, time-dependent valuationvi(q, t), which relies on time
t in addition to quantityq. They point out that as long as their as-
sumption of a non-decreasing supply curve holds there will be no
advantage for an agent to delay its bid or try to make multiple bids.
In other words,i will still want to declare its bid as soon as possi-
ble, which will be at timeai upon its arrival. So essentially all of
the competitive analysis done by Lavi and Nisan holds.

5. CONCLUSIONS
For Hajiaghayi et al., their primary interest for future work is to

derive a mechanism such that it has tighter upper and lower bounds
on efficiency and revenue. They also want to examine lower bounds
when valuations are drawn from an unknown distribution. An open
problem in [2] is to derive constant competitive ratios because their
scenario is more difficult to solve since an agent can receive more



than 1 item. Finally, Hajiaghayi et al. would also like to consider a
generalized version of the problem in [7] where items can be reused
(e.g. a wireless connection at an Internet cafe).

Other than the extensions we described in section 4, Lavi and
Nison do not present any possible future work to their model. How-
ever, a natural extension of the work down by these two groups may
be to combine their mechanisms into a more generalized version.
In other words, the next step would be to attempt to construct a
SP online auction that makes no assumption about the distribution
from which the valuations and time intervals are drawn from as in
[8], but also allow agents to demand more than one copy of the
good [2].
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