
Nash Equilibrium in Graphical Games and Stochastic Graphical Games

Le Chang
Department of Computer Science
University of British Columbia

238-2366 Main Mall
Vancouver, B.C. V6T 1Z4

lechang@cs.ubc.ca

Abstract

In this paper, graphical games, a compact graphical
representation for multi-player game theory is intro-
duced. Various Nash equilibrium computing algorithms
for graphical games are reviewed and a naive join tree
base approximate Nash equilibrium computing algo-
rithm is proposed. The proposed algorithm can be effi-
ciently used in graphical games with arbitrary underly-
ing structure. Graphical representation of multi-player
stochastic games is also discussed as an extension of
graphical games in this paper.

1 Introduction
Normal form game is probably the most widely used repre-
sentation in the study of one-stage multi-player game the-
ory. In a one stage n-person game, there are a set of pos-
sible actions 1 and a payoff function for each player. Each
payoff function maps joint actions of n players into a real
value. Equivalently, payoffs can also be represented in tab-
ular form, where the game is given by n matrices, each with
size cn, specifying the payoff under any possible combina-
tion of joint actions. The representation is exponential in
the number of players in the game, making traditional ap-
proaches to manipulate it impossible in large scale multi-
agent systems.

In many practical cases, the payoff of player i is only
determined by actions of player i and a subset of players
in the game, thus the payoff matrix for player i is indexed
only by these players. Assuming there is k indices at most,
the size of the payoff matrix will be exponentially smaller
given k << n. Graphical games (Kearns, Littman, & Singh
2001) is a compact graph-theoretic representation of multi-
player game theory in such cases. By using graphical rep-
resentation, efficient algorithms can exploit the underlying
game structure represented in graphical games and manipu-
late original scale games efficiently. More specific, it pro-
vides possibility to avoid the intractability to compute Nash
equiliria in scale multi-player games.

Generally speaking, there are two classes of approaches to
compute Nash equilibrium in graphical games. The first one
is explicitly utilizing the graph topology of graphical games.

1I assume each player has exact c possible actions in this paper.

Just analogy with settings in Bayesian networks of proba-
bility inference and constraint networks of Constraint Satis-
faction Problems (CSP), these approaches solve graphically
local games firstly and find global solution through the prop-
agation of local influences. The first approach of this class
is abstract tree-based algorithm (Kearns, Littman, & Singh
2001) for graphical games which underlying structure is a
tree. Two variances of the abstract tree algorithm are devel-
oped in the same paper to compute exact and ε-approximated
Nash equilibrium respectively. Later this approach is ex-
tended by (Ortiz & Kearns 2003) to solve graphical games
with loops. (Vickrey & Koller 2002) relaxes the undirect
graph restriction into directed graph and solving the prob-
lem by using variable elimination algorithm in CSP by for-
mulating the problem into CSP framework. Another class of
approaches is using traditional function optimization meth-
ods to solve the problem by exploiting graphical structure in
computation. One of these approaches is using continuation
method to compute exact Nash equilibrium (Blum, Shelton,
& Koller 2002). Another approach is using climbing hill
technique (Vickrey & Koller 2002) to optimize regret func-
tion in the game.

In this paper, I will present a naive join tree based algo-
rithm to compute approximate Nash equilibrium in graphi-
cal games. Different from existed algorithm, the proposed
algorithm can be applied in graphical games with arbitrary
underlying structure. I will also discuss the possibility of
extending graphical games into stochastic graphical games
by introducing state variables. The content of this paper is
organized as following: related definitions and terminology
are introduced in section 2; in section 3 I will briefly review
current Nash equilibrium computing algorithms for graphi-
cal games; then a naive join tree based algorithm, named join
tree Nash algorithm, is presented in section 4; in section 5,
I will discuss the correctness, complexity and implementa-
tion issues of the algorithm; possible extension of stochastic
graphical games is given in section 6; conclusion and future
works are discussed in the last section.

2 Graphical Games and Nash Equilibrium
Formally, a graphical game is a pair (G,M), where G is
an undirected graph on n vertices, corresponding to n play-
ers of the game, and M is a set of n payoff matrices Mi

(1 ≤ i ≤ n), which specifies the payoff of player i. There

is an undirected edge in G if j’s payoff is depended on i’s
strategy and i’s payoff is depended on j’s strategy. The undi-
rected assumption can be relaxed in future discussion. For
convenient, I use FG(i) to denote neighbors of player i in G
plus player i itself. Assume there are c possible actions for
each player, a mixed strategy θi = (θi1 , . . . , θic) for player
i is a probability distribution over all of c possible actions
(ai1 , . . . , aic) for player i. θi(aij) denotes the probability
on j’s action of a mixed strategy θi of player i.

A pure strategy is a special case of mixed strategy such
that probability 1 is assigned to one action and 0 to all
other actions. We use θ to denote strategy profile of a set
of players, and define (θ−i, θ

′
i) to be the same as θ ex-

cept player i plays θ′i instead of θi. The payoff matrix
Mi of player i can be expressed as Mi(ai1 , . . . , aik) where
ij ∈ FG(i). Each entry of it specifies the payoff under
a possible joint actions combination. Then the expected
payoff of player i given a strategy profile θ is Ui(θ) =
∑

i1,...,ik
Mi(ai1 , . . . , aik)

∏k

j=1 θij (aij). A Nash equilib-
rium for a game is a mixed strategy profile θ = (θ−i, θi)
such that for any strategy θ′i of any player i, Ui(θ−i, θi) ≥
Ui(θ−i, θ

′
i). A ε-approximate Nash equilibrium is a mixed

strategy profile θ = (θ−i, θi) such that for any strategy θ′i
of any player i, Ui(θ−i, θi) + ε ≥ Ui(θ−i, θ

′
i). We call

θi the (ε) best responds to the rest of θ. In addition, θC
is used to denote a strategy profile of players in C, where
C ⊆ {1, · · · , n}.

3 Nash Equilibrium Computing Approaches
3.1 Function Optimization Approaches
The first class of approaches to compute Nash equilibria in
graphical games is developed from traditional function opti-
mization approaches in game theory, where graphical struc-
ture is exploited to make computation in those algorithms
more efficiently.

Hill Climbing Algorithm (Vickrey & Koller 2002) de-
fines a score function to measure the distance of a given
strategy profile away from an equilibrium, and finds an
approximate equilibrium by minimizing such a function
through hill-climbing algorithm. A score function S(θ) =
∑

i Regi(θ) is defined as sum of regrets of the players,
where regret function of player i with respect to mixed strat-
egy θ is the most player i can gain by diverging from θ:

Regi(θ) = maxθ′
i
(Ui(θ−i, θ

′
i)− Ui(θ))

Obviously S(θ) is nonnegative and is equal to 0 exactly
when θ is a Nash equilibrium. It can be minimized by using
greedy hill climbing, where directions are defined as gains
of each player i:

Gi(θ) = maxθ′
i
[S(θ)− S(θ−i, θ

′
i)]

The proposed algorithm exploits the structure of graphical
games, making implementation of updating gain function
efficiently after choosing a up-hill direction greedily. Climb-
ing hill can not guarantee to find a global minimum, but local
minima are often good approximate equilibria, as argued in
(Vickrey & Koller 2002).

Continuation Method Continuation method works by
solving a simpler perturbed problem and then tracing the so-
lution as the magnitude of the perturbation decreases, con-
verging to a solution to the original problem. In finding
equilibrium in game theory (Blum, Shelton, & Koller 2002),
continuation method perturbs the game by adding λ times a
fixed bonus to each agent’s payoff, such each agent’s bonus
depends on its own actions. If the bonuses are large enough,
the perturbed game has only one equilibrium that to maxi-
mize its own bonus in λ = 1. The original equilibria can
be gotten by tracing decrease of λ from 1 to 0. The most
expensive step in continuation method is computing Jaco-
bian matrix for perturbed game, which is exponentially in
the size of FG(i) in the corresponding graphical game. Pre-
cisely, computing Jacobian matrix for graphical games takes
time O(nkck+n2), where k is the maximal family size and c
is number of actions per player. Empirical results in (Blum,
Shelton, & Koller 2002) show that continuation method is
more efficient for smaller games size.

3.2 Variable Elimination Approaches
The second class of approaches to compute Nash equilibria
in graphical games is exploiting graphical topology of the
underlying game structure. Those approaches can be viewed
as nonserial dynamic programming or variable elimination,
which are already widely studied in many fields that have
structured graphical representation. General idea behind
those approaches is solving graphically local games and
finding global solutions through a message passing scheme
among local games.

Abstract Tree Algorithm and Its Variants Abstract Tree
Algorithm (Kearns, Littman, & Singh 2001) is the first al-
gorithm proposed to compute Nash equilibria of a graphical
game, which is restricted to be used when the underlying
graph is a tree. By providing different data structure and
implementation details, the proposed abstract tree algorithm
can be developed as one algorithm that computes every ε-
approximate Nash equilibrium in polynomial time, and an-
other algorithm that computes all exact Nash equilibria in
exponential time if there are only 2 actions for each player.

Given a graphical game (G,M) where G is a tree, ab-
stract tree algorithm chooses arbitrary vertex as root. Any
vertex on the path from a vertex to the root is called down-
stream from that vertex and upstream if it is on the path to
leaf. Also parent is used to denote upstream neighbor and
child is used to denote downstream neighbor of a vertex. In
the tree structure, an internal vertex will have many parents
and only one child. Leaf is vertex that has no parent and root
is vertex that has no child. The first pass of abstract tree algo-
rithm is from leaves to root: a vertex collects best response
to its parents and its child respectively, combines and records
its constraint best responses (namely witness), generates a
table which indicates his ”belief” on what to play given his
parents information, and passes it to its child. The process
repeats until reaches the root. The second pass is from root
to leaves: the algorithm chooses any witness or enumerates
all witnesses attached to a vertex, passes it to parents and
chooses new witnesses according to the constraint of chosen

witness. Then equilibrium will be incrementally constructed
following the process.

The approximate tree algorithm is an instantiation of ab-
stract tree algorithm by discretizing mixed strategy for each
player for some grid resolution τ , thus regular table repre-
sentation and manipulation can be used in the implemen-
tation of the algorithm. (Kearns, Littman, & Singh 2001)
proves that given any ε > 0, we can choose:

τ ≤ min
(

ε/2k+1 (k log(k)) , 4/
(

k log2(k/2)
))

Such that ε-approximate Nash equilibrium can be computed
by approximate tree algorithm in polynomial time in the size
of the representation (G,M). Here k is the maximal number
of parents of vertices in the graph.

Another instantiation of abstract tree algorithm is exact
tree algorithm, which only applies in 2-action games. The
exact tree algorithm is simply the abstract tree algorithm
by replacing table representation with union of rectangles.
(Kearns, Littman, & Singh 2001) also proves that exact tree
algorithm computes a Nash equilibrium for the tree game
(G,M) in exponential time in the number of vertices of G.

Variable Elimination in Loopy Graphical Games In
(Ortiz & Kearns 2003), a generalized Nash propagation al-
gorithm of abstract tree algorithm is proposed. Unlike the
abstract tree algorithm, the proposed NashProp algorithm
can operate on the graph with loops directly. It consists of
two phases as well. The first one is table passing, which
is proved to be always converging and the second phase is
backtracking local assignment passing. NashProp algorithm
provides efficient computational properties on loopy graphs
directly, which can not be solved by abstract tree algorithm
efficiently.

CSP Algorithm (Vickrey & Koller 2002) propose an
approach to solve graphical games by formulating ε-
approximate Nash equilibrium computing problem as a CSP
and solving the problem by variable elimination algorithm
in CSP framework. Specifically, each variable in CSP cor-
responds to a player in graphical games and value of a vari-
able is from player’s strategy space. The constraint Ci en-
sures that each player has regret at most ε in response to the
strategies of its parents, say Ci is {(θ−i, θi)|Regi(θ−i, θi) ≤
ε}. Since standard CSP techniques only deal with discrete
domain variables, grid technique is also applied, thus ε-
approximate Nash equilibrium can be computed in a general
graphical game. The CSP variable elimination algorithm
also applies to asymmetric (directed graph) and non-tree-
structured games, which is out performed than abstract tree
algorithm.

3.3 Hybrid Algorithms
There are also several attempts to combine existed algo-
rithms into a hybrid algorithm. One interesting approach
is proposed in (Vickrey & Koller 2002), which firstly trans-
forming ε-approximate Nash equilibrium computing prob-
lem into CSP, then using join tree algorithm in CSP frame-
work to find global solution after using hill-climbing algo-
rithm to solve local games in clusters in the join tree. The al-
gorithm is efficient for finding approximate equilibrium but

need special requirement for the representation of the graph-
ical game, say, the transformed constraint networks in CSP
has to be directed acyclic graph. Although has these restric-
tions, the idea if using join tree algorithm to finding approx-
imate Nash equilibrium is promising. In the next section I
will present a naive join tree Nash algorithm which operates
on the graph of the game directly and has no special require-
ments for the structure of the graph.

4 Join Tree Algorithm for Graphical Games
Most of existed approaches to compute Nash equilibrium
in graphical games require special properties of underly-
ing game structures. Loopy variable elimination algorithm
works with games which have arbitrary underlying graph,
but performance is highly sensitive with the topology. In
this paper, I will present a naive join tree based algorithm
which operates on arbitrary graph for finding approximate
Nash equilibrium. The algorithm is consisted of 3 parts: (1)
Transforming arbitrary graph G into join tree T ; (2) Attach-
ing local information with each cluster in T ; and (3) Global
messages propagating to find equilibria.

4.1 Join Tree Generation
Given a graphical game (G,M), G is an undirect graph with
arbitrary structure. I notice that representation with directed
edges in (Vickrey & Koller 2002) can be easily transformed
by removing edge directions. An optimal join tree for the al-
gorithm can be generated from original graph through three
steps: triangulating graph, identifying clusters and building
optimal join tree. The procedure of build optimal join tree is
widely studied. See (Huang & Darwiche 1996) for detailed
discussion.

Triangulating Original Graph An undirected graph is
triangulated if and only if every cycle of length four or
greater contains an edge that connects two nonadjacent
nodes in the cycle. There is a procedure that triangulate an
arbitrary undirected graph:

1. Make a copy of G, named G′.

2. While there still are nodes left in G′

(a) Select a node 2 V from G′.
(b) FG(V) forms a cluster. Connect all nodes in this cluster

and add corresponding edges in graph G.
(c) Remove V from G′

3. G is the triangulated graph now.

Identifying Cliques A clique in an undirected graph G is
a subgraph of G that is complete and maximal. A clique
is complete if every pair of distinct nodes is connected by
an edge. A clique is maximal if the clique is not properly
contained in a larger complete subgraph. There are sev-
eral efficient algorithms to identify cliques of an arbitrary

2Although finding optimal triangulated graph is NP-complete,
there are several greedy, polynomial heuristic to produce high qual-
ity triangulation. One criteria to determine the sequence of node
selection is choosing node that causes the least number of edges
added.

W
1

W
k
 E
k

E
2

E
1

W
2

W
1

W
k

W
2

E
1

E
k

E
2

W
1

W
k

W
2

E
1

E
k

E
2

W
1
,E1
,W2

W
2
,E1
,E2

W
k
,Ek-1
,Ek

E
1
,W2

(a)
 (d)
(c)
(b)

Figure 1: Transforming Road Game into Join Tree. (a) Road
game with 2k players, locating east and west side of the road.
(b) Representing road game in graphical games. (c) Triangu-
lating of the graph (d) Join tree representation of road game.

triangulated graph. Simply the induced cluster from (2b) of
triangulating step is a complete and maximal clique if it is
not a subset of previous induced cluster. So we can identify
cliques by saving induced cluster during the triangulating
step.

Building Optimal Join Tree Given a set of obtained
cliques, we need to connect them into an optimal join tree
that satisfies the join tree property and minimize the compu-
tational time for finding equilibrium. The join tree property
is: given two clusters X and Y in an undirected tree T , all
clusters on the path between X and Y contain X∩Y. How-
ever, we do not require the FG(V) of node V in original
graph G is included in at least one cluster. Detailed discus-
sion of building optimal join tree can be found in (Jensen &
Jensen 1994).

Figure 1 is an illustration of the process of transforming
Road Game into optimal join tree. Road game has 2k play-
ers, each player own a slot along the road. Player has to
decide which types of building to build in his slot. There are
three types of building: shopping mall, factory and residen-
tial complex. The payoff of each player is determined by the
type of his building, building types of two players besides
him and building type of the player directly across the road.

4.2 Local Information Assignment
Let T be the join tree transformed from G and C be a cluster
in T . For convenient, I also use C to denote vertices in G
that are contained in this cluster, i.e., C ⊆ {1, · · · , n}. S

is used to denote separator between clusters X and Y such
that S = X ∩Y.

For each vertex i ∈ {1, · · · , n} in original graph G, there
exists a payoff matrix Mi, as terminology defined before, all
entries of Mi equal to possible actions combination of play-
ers FG(i). For any cluster C in T , if FG(i) ⊆ C, algorithm
attaches Mi with C, renaming it with MC

i . If there is no
such a cluster contains all family of vertex i (say, all indices
of player i’s payoff matrix), attach Mi to any separator S if
i ∈ S. Let MS be all matrices that attached to S.

For each separator S and each matrix Mi ∈ MS , algo-
rithm passes Mi to all clusters in T along pathes rooted in
S, terminated on clusters that do not contain i. When mes-
sage is passing to a cluster C, algorithm attaches Mi with C,

renaming it with MC
i . Also there is a set of indices DC(i) of

matrix MC
i such that DC(i) = {j ∈ FG(i)|j /∈ C}, which

denotes the condition player set of player i in cluster C.
When the process terminates, there is no payoff matrix at-
tached with any separator and for each cluster, there are |C|
matrices MC

i , each corresponds to a vertex contained in C.
The indices of each MC

i are divided into two subsets: DC(i)
denotes indices (vertices) of MC

i which are not in cluster C;
LC(i) = FG(i) − DC(i) denotes indices (vertices) of MC

i

which are in cluster C. D(C) = {
⋃

i DC(i)|i ∈ C} and
obviously C = {

⋃

i LC(i)|i ∈ C}. D(C) is called as de-
pendent set of C. More specific, we separate the local game
in a cluster from other parts of the game, if given a possible
strategy profile θD(C) of a subset players D(C).

4.3 Finding Global Nash Equilibrium
According to the property of join tree, we can choose any
cluster as root of T . More efficiently, in the proposed al-
gorithm, the cluster C with smallest size of D(C) will be
selected as the root. For each possible strategy profile θD(C)

of D(C), there is a corresponding local game with k play-
ers where k is the size of cluster C. Each player of the lo-
cal game has a payoff matrix, which has indices on mem-
bers of C. Given k << n, we can either use standard
Nash equilibria computing algorithms by transforming the
local game into norm form, or use existed approaches, such
as hill-climbing or continuation method, to find Nash equi-
libria θC in the corresponding local graphical game. Each
Nash equilibrium θC of local game in cluster C corresponds
to a θD(C). Join strategy profiles of two parts together, we
have a set of strategy profiles θC over each player i where
i ∈ C ∪D(C). Intuitively, θC can in represented in tabular
form.

After finding all Nash equilibria of the local game in the
root cluster, we pass θC to each child cluster L of C in T .
Possible strategy profiles θD(L) of D(L) are restricted by
θC, thus the number of local games to solve in cluster L

will be much smaller. Also computed local Nash equilibria
θL is restricted by θC as well, which decreases the size of
θL. The process repeats until every cluster in the tree has
received restricted strategy profiles from its parent and find
its local equilibria based on the restriction.

The second pass of finding global Nash equilibrium is col-
lecting restricted local strategy profiles from leaves to the
root of the join tree, through join operation over local strat-
egy profiles. The final strategy profiles in the root cluster are
Nash equilibria for the original game.

5 Algorithm Discussion
5.1 Correctness
Theorem: Proposed join tree Nash algorithm computes a
Nash equilibrium for graphical game (G,M) with arbitrary
graphical structure.

Proof: Given any Nash equilibrium θ of graphical game
(G,M), according to the definition, for any strategy θ′i of
any player i we have:

Ui(θ−i, θi) ≥ Ui(θ−i, θ
′
i)

We also have Ui(θ−i, θi) = Ui(θFG(i)−{i}, θi). So for
any strategy θ′i of any player i we have:

Ui(θFG(i)−{i}, θi) ≥ Ui(θFG(i)−{i}, θ
′
i)

According the result of graph theory, (directed or undi-
rected)graph with arbitrary structure can be transformed
into join tree. Now we consider a cluster C of resulted T
by the algorithm. Proposed join tree Nash algorithm ensure
that FG(i) = ŁC(i) ∪ DC(i) for any player i ∈ C. For a
strategy profile θDC

which is the projection of global Nash
equilibrium θ on players in DC , consider the corresponding
local Nash equilibrium θC of local game in cluster C:

Ui(θFG(i)−{i}, θi) = Ui(θDC(i), θLC(i)−{i}, θi)

It indicates that there is a local Nash equilibrium θC
which is the projection of global Nash equilibrium θ on clus-
ter C, if θDC

is the projection of a global Nash equilibrium
θ on players in DC . Since proposed join tree Nash algo-
rithm considers any strategy combination of players DC of
cluster C, computed local Nash equilibria θC will never loss
a corresponding projection of global Nash equilibrium, thus
messages passing to children clusters will never loss global
Nash equilibrium as well.

So the join of Nash equilibria of local games will result in
a global Nash equilibrium. 2

5.2 Algorithm Complexity
The time complexity of proposed join tree Nash algorithm is
dominated by finding local Nash equilibria given a strategies
combination of other players. Let T (k) be running time for
finding all Nash equilibrium in a local game with k players.
Let c be number of clusters in T and k be the maximum clus-
ter size. Also let d = maxC |DC | and s be the max number
of possible strategies for players in the game. The running
time of proposed join tree Nash algorithm is bounded by:

c · T (k) · sd

I notice that in most clusters we do not need to compute
Nash equilibria for sd local games, each corresponding to a
possible strategies combination of players in DC . In many
cases, the size of possible strategies combination is restricted
by the computing result of its parent cluster in T . Also we
can optimize join tree generation part in the algorithm to find
an optimal join tree such that has tradeoff between minimiz-
ing k and minimizing d. A better Nash equilibrium comput-
ing algorithm for games with small size will be a benefit as
well to improve time complexity of proposed join tree Nash
algorithm.

5.3 Implementation Issues
A key step in the proposed join tree Nash algorithm is enu-
merating all possible strategy combinations of a set of play-
ers, which need us to discretize the strategy space for players
in the algorithm implementation. Here we can use gridding
technique in (Kearns, Littman, & Singh 2001). Their result
of computing τ -approximate Nash equilibrium by choosing
ε still holds (k is the maximum family size):

τ ≤ min(ε/(2k+1(k log(k))), 4/(k log2(k/2))))

To find Nash equilibria of local game efficiently, there are
several choices. The first one is transforming it into nor-
mal form and using classic approached to solve it. For ex-
ample, we can use QRE algorithm API provided by game
solving package Gambit 3. Another choice is using function
optimization approaches for graphical games such as hill-
climbing algorithm and continuation method reviewed be-
fore. When the cluster size is relatively big, the latter choice
has computation advantages than the former one.

Another implementation issue is how to schedule se-
quences of message passing efficiently. We can incorporate
parallel computing techniques to solve local games in clus-
ters which share a same parent cluster. In general, hybrid
scheduling of massage passing is a common concern for join
tree based algorithms.

Finally, to compare the efficiency of proposed join tree
Nash algorithm with existed approaches, we can use road
game introduced in Figure 1 as an experiment platform. We
can test two types of payoffs. One set of payoff is each
player plays a game of paper, rock and scissors against each
of his neighbors. There is no pure strategy equilibrium and
this is no surprising that in such a game, (1/3, 1/3, 1/3) is
always an equilibrium. Another set of payoff is assigning
random payoffs uniformly.

6 Stochastic Graphical Games
Following the same idea, we can use compact graphical rep-
resentation in the study of stochastic games, extending the
definition of graphical games by introducing state variables
for the game. Formally, a Stochastic Graphical Game is a
tuple (G,M,S, P), where G is an directed graph on n ver-
tices, corresponding to n players of the game,M is a set of n
payoff matrices Mi (1 ≤ i ≤ n), which specifies the payoff
of player i under joint actions of a set of players and a state
of the game, i.e., Mi : A × S → R, and S is a set of states
s, each of s specifies a state of the game. Here I assume
the state of the game can be fully observed by all players in
the game. There is an directed edge (i, j) in G if j’s payoff
is depended on i’s strategy under some state s of the game.
Finally P : S × A × S → [0, 1] is the transition probabil-
ity function; P (s, a, s′) is the probability of state transition
from s to s′ for the game given joint action a ∈ A. Since
each vertex in G represents a player in the game, The payoff
matrix Mi attached with vertex i can be seen as several pay-
off matrices, each corresponds to one state of the game and
only indexed by joint actions of player i itself and its parent
vertices under such a state of the game.

There are several benefits of introducing states into graph-
ical games. Firstly it grasps the nature of many real world
games, where pay-off of a player is not only decided by
joint action, but also by current game state. Secondly, we
can dramatically reduce the complexity of the graph af-
ter observing the state of the game, which gives stochas-
tic graphical games a context-specified property (Guestrin,
Venkataraman, & Koller 2002). Thirdly, it brings dynamic
framework for extending graphical games and many tech-
niques in Markov Decision Process can be used to investi-

3http://econweb.tamu.edu/gambit/

gate stochastic graphical games. Actually Markov Decision
Process is simply a stochastic game with only one player. Fi-
nally, knowledge for computing Nash equilibrium in graph-
ical games can be used as basis for solving stochastic graph-
ical games.

An important definition in stochastic games is Markov
strategy. A strategy (θi, hi) of player i in a stochastic game
is a probability distribution over all possible actions of for
player i, given a history hi = {s1, · · · , st} of states. (θi, s)
is Markov strategy if the probability on an action is only de-
termined by the final state s of the history. Another impor-
tant result is, in any stochastic games with discount-payoff,
a Nash equilibrium always exists. More stronger, for any
n-player, general sum, discounted reward stochastic game,
there exists a Markov perfect equilibrium. Here Markov per-
fect equilibrium is defined as a strategy profile which only
consists Markov strategies and is a Nash equilibrium regard-
less of the starting state.

Given properties of stochastic games, computing Markov
perfect equilibria of a stochastic graphical game can be
treated as finding a Nash equilibrium given current state of
the game and future discount payoff of each player, i.e.:

Ui ((θ−i, s), (θi, s)) = Ri ((θ−i, s), (θi, s))

+λ
∑

s′

P (s, θ, s′)Ui ((θ−i, s
′), (θi, s

′))

Formally we are finding θi given a state s for each player
i such that for any other strategy θi

′:

Ui(θ−i, θi, s) ≥ Ui(θ−i, θi
′, s)

I notice that instant payoff Ri(θ, s) can be compute effi-
ciently by transforming the stochastic graphical game into
graphical game by fixing the state s. In such a case, graph-
ical structure will be simplified since many edges may dis-
appear under such a context. The second part, future dis-
counted payoff, can be replaced by estimation of discount
payoff so far, as techniques used in Q-Learning. In general,
we need store the structure of join trees corresponding to
every state of the game and maintain a table specifies dis-
counted payoff of each player under every strategy profile
and game state. The algorithm requires a period of train-
ing time, ensuring entries in the payoff table are visited fre-
quently enough. The size of such a table is exponentially
huge but underlying context-specified graphical structure of
the stochastic graphical game can be exploited to reduce the
computational cost efficiently.

Limited by time and space, I only discuss some basic
properties and solving ideas of stochastic graphical games
here. It is far from complete and relative naive so far.
I believe exploiting underlying context-specified graphical
structure of the stochastic graphical game efficiently is a
promising direction to study stochastic games.

7 Conclusion and Future Works
In this paper, existed Nash equilibrium computing algo-
rithms for graphical games are reviewed and compared.
Based on those results, a naive join tree based Nash equi-
librium computing algorithm is introduced. By using grid-
ding technique, the proposed algorithm can be efficiently

used to compute ε-approximate Nash equilibrium in graph-
ical games with arbitrary underlying structure. Due to lim-
ited time, I only proof the correctness and analysis the al-
gorithm’s time complexity theoretically, however I discuss
the implementation issues in this paper, which ensure future
experiment comparison feasible. From the time complexity
analysis, I notice that finding optimal join tree such that re-
duces cluster size as well as reduces the size of dependent
set is a key point to optimize the algorithm. It prompts us to
investigate optimal join tree generating approaches in future
study. In the end of this paper, I also discuss some prelimi-
nary ideas of extending graphical games to stochastic graph-
ical games through introducing state variables. Ideas here
are far from complete and there are many work remaining in
future study.

Acknowledgments Thanks for Kevin Leyton-Brown, the
instructor of CPSC532A course at UBC. The comments and
suggestion from him is invaluable for me to finish this paper.

References
Blum, B.; Shelton, C. R.; and Koller, D. 2002. A contin-
uation method for nash equilibria in structured games. In
Eighteenth national Joint Conference on Artificial Intelli-
gence. American Association for Artificial Intelligence.
Guestrin, C.; Venkataraman, S.; and Koller, D. 2002.
Context-specific multiagent coordination and planning
with factored mdps. In Eighteenth national conference on
Artificial intelligence, 253–259. American Association for
Artificial Intelligence.
Huang, C., and Darwiche, A. 1996. Inference in belief
networks: A procedural guide. International Journal of
Approximate Reasoning 15(3):225–263.
Jensen, F. V., and Jensen, F. 1994. Optimal junction trees.
In Mantaras, R. L., and Poole, D., eds., Tenth Conference
on Uncertainty in Artificial Intelligence, 360–366. Morgan
Kaufmann Publishers Inc.
Kearns, M. J.; Littman, M. L.; and Singh, S. P. 2001.
Graphical models for game theory. In Proceedings of the
17th Conference in Uncertainty in Artificial Intelligence,
253–260. Morgan Kaufmann Publishers Inc.
Ortiz, L. E., and Kearns, M. 2003. Nash propagation for
loopy graphical games. In S. Becker, S. T., and Obermayer,
K., eds., Advances in Neural Information Processing Sys-
tems 15. Cambridge, MA: MIT Press. 793–800.
Vickrey, D., and Koller, D. 2002. Multi-agent algorithms
for solving graphical games. In Eighteenth national con-
ference on Artificial intelligence, 345–351. American As-
sociation for Artificial Intelligence.

