
Multiagent∗ Gradient Ascent with Predicted Gradients

Asher Lipson
University of British Columbia

Department of Computer Science
201-2366 Main Mall

Vancouver, B.C.
V6T 1Z4

alipson@cs.ubc.ca

Abstract

Learning in multiagent environments is a difficult task that re-
quires each agent to consider both their own action and those
of their opponents. Research has generally concentrated on
using game theoretic ideas and applying the reinforcement
learning techniques of Q–learning or policy search to solve
this problem. However, most approaches make assumptions
that limit their applicability. We present a new algorithm,
‘Gradient Ascent with Predicted Gradients’, that unlike cur-
rent gradient ascent algorithms, does not require the full in-
formation of the game to be visible. Experiments and com-
parisons are shown between this algorithm and algorithms
from the literature, IGA, WoLF–IGA and minimax–Q. The
results are promising, showing that the algorithm is able to
predict the strategy of an opponent and learn a best response
to that strategy.

Introduction
In single agent learning environments there are a number of
well established algorithms, such as Q–learning, that guar-
antee the learning of optimal actions in explored states. Ex-
tending these single agent approaches to multiagent environ-
ments is a difficult task due to the utility of an agent being
dependant on both the agent’s own actions as well as the ac-
tions of other agents. The notion of a single optimal action
is no longer as relevant and this has led to the use of game
theoretic ideas that formalise the interaction between multi-
ple agents. Though much work has been done on creating
algorithms that combine game theory and learning, the al-
gorithms often make crippling assumptions that limit their
applicability.

In this paper, we present a short description of two learn-
ing approaches, Q–learning and policy learning/search1,
with a focus on gradient ascent algorithms. We then dis-
cuss the limitations of these approaches, including dimin-
ished applicability and information visibility requirements.
A new gradient ascent algorithm is then presented, ‘Gradi-
ent Ascent with Predicted Gradients’ (GAPG), that avoids

∗The spelling of this term varies between ‘multi agent’, ‘multi-
agent’ and ‘multiagent’, depending on the author. This paper takes
the latter spelling.

1The literature often uses the terms policy learning and policy
search interchangeably, though they are applied in different con-
texts. This paper will refer to policy search to cover both.

the requirement in policy search algorithms that the full in-
formation of the game is visible. We perform experimen-
tal comparisons on the games Battle of the Sexes, Chicken,
Matching Pennies and Prisoner’s Dilemma. GAPG is com-
pared against minimax–Q (Littman, 1994), infinitesimal gra-
dient ascent (Singh, Kearns, & Mansour, 2000) and infinites-
imal gradient ascent with the WoLF principle, WoLF–IGA
(Bowling & Veloso, 2001a). We expect that in 2–agent
games, GAPG is able to model the strategies of opponents
and learn a best response to these strategies. Lastly we list a
number of ideas for future work.

Multiagent Learning
We define multiagent learning as the process by which more
than one agent interacts in an environment with both the en-
vironment and other agents, learning what actions to take.
Agent i learns what action is best in response to what agent j
does. If we use the history of what j has done, then we have
j teaching i and vice versa. Each agent can thus be seen as
both a learner and a teacher (Shoham, Powers, & Grenager,
2003).

In single agent learning, the environment is stationary and
is modelled as a Markov Decision Process (MDP). The agent
transitions between states with a probability based on the
action taken. Reinforcement learning (RL) is a technique
used to learn in MDPs. In RL, an agent is rewarded or pun-
ished for actions and the agent tries to maximise the reward
it receives in each state. There are two variants to RL: Q–
learning and policy search.

Moving from the single agent to multiple agent brings us
into game theory and stochastic games. The environment
is no longer stationary and multiple agents affect transitions
between different states or stage games. Each of these stage
games is a one-shot game theory game. Unfortunately, the
standard reinforcement learning algorithms do not work ‘out
of the box’ for all cases of multiagent learning. The value
of a state is no longer dependant only on a single agent’s
actions, but rather on all agents’ actions.

The lack of a clear definition for an optimal action has
meant that most algorithms are judged on their ability to
converge to a Nash equilibrium, where every agent’s action
is a best response to the current actions of all other agents.
There has recently been discussion as to whether converg-
ing to a Nash equilibrium is the correct goal. Shoham, Pow-

ers, & Grenager (2003) argue that the best response depends
on the type of agent in the environment. For example, one
might want to accumulate rewards, guarantee a minimum
value, obtain the maximal expected payoff or converge to an
equilibrium, depending on the other types of agents. Similar
ideas of learning algorithms depending on the class of agents
has been articulated elsewhere in the literature (Bowling &
Veloso 2001b, Littman 2001). This paper takes the view that
converging to a Nash equilibrium is not always the optimal
goal and obtaining rewards may be equally important.

The rest of the paper is structured as followed, firstly Q–
learning and policy search are described with examples of
algorithms provided. The reader is directed to Fudenberg &
Levine (1999) for a general discussion of multiagent learn-
ing techniques. While there has been work on learning poli-
cies or coordination mechanism efficiently (Brafman & Ten-
nenholtz 2003, Bagnell et al. 2003), these will not be dis-
cussed here.

Q–learning
Q–learning is a technique initially devised for learning in
single agent environments. The value of an action in a stage
game is encoded in a Q–function, with the agent maximis-
ing the function at each stage. The value is dependant on
the reward from the current stage and a discounted value of
expected future rewards. The choice of actions can also be
controlled by a policy defined over the states. This section
will discuss algorithms that learn the Q–functions, while the
subsequent section will discuss algorithms that learn the pol-
icy.

In multiagent versions of Q–learning, one can either take
the other agents into account or one can assume that they
form part of a stationary environment. If the other agents
are taken into account, then each learning agent explicitly
models the Q–functions of the other agents. This approach
requires a large amount of space and means that all infor-
mation in the game must be visible, with agents knowing
each others payoffs, learning rates and actions. Claus &
Boutilier (1997) refer to joint action learners (JALs) that
keep a belief of what actions the other agents will play. The
Hyper–Q algorithm of Tesauro (2003) is very similar to the
work by Claus & Boutilier, but with a Bayesian approach.
Hyper–Q explicitly models mixed strategies, with policies
being greedily chosen based on the probability of the other
agent’s mixed strategy.

If one assumes that the other agents are part of the en-
vironment, then one does not model them and they are ig-
nored. Though this idea appears flawed, it has been proved
that if such an algorithm converges, it will converge to a
Nash equilibrium. The idea of converging regardless of what
the other agents do sounds appealing, but it also runs counter
to the idea of multiagent learning and taking into account the
existence of other agents. In reality, the agents are trying to
learn the best action for a state that is dependant on the ac-
tions of other agents, essentially a moving target problem
(Vidal & Durfee, 1998).

One of the first multiagent extensions to Q–learning was
minimax–Q (Littman, 1994) for 2–agent zero–sum games.
The value of a state is defined as the maxmin of the ac-

tions. This provides a guaranteed minimum reward by as-
suming the opponent will play the action that leads to the
worst payoff for the learner. This idea can be extended to
general–sum games in order to guarantee a minimum pay-
off. Hu & Wellman (1998) presented the Nash–Q algorithm
in which agents stored a Q–table for each other agent. Ac-
tions at each stage game are chosen by solving for a Nash
equilibrium. The algorithm is quite restrictive in that con-
vergence is only guaranteed when there is a single unique
equilibrium in each stage game, which cannot be predicted
during learning (Bowling & Littman, 2003). Both minimax–
Q and Nash–Q aim to converge independently of their op-
ponent’s actions (Bowling & Veloso, 2000). The algorithms
also suffer from only being able to learn pure strategies.

The Friend–or–Foe Q–Learning algorithm (Littman,
1994) is an attempt to converge even in the presence of mul-
tiple equilibria. Each agent in the environment is identified
as either a friend or a foe to the learning agent and a dif-
ferent learning rule is used accordingly, allowing conver-
gence to a coordination or adversarial equilibrium respec-
tively. The friend portion plays single agent Q–learning,
maximising over the action space for all friends, whilst the
foe portion plays minimax–Q. Unfortunately this algorithm
suffers from a similar limitation to Nash–Q in that conver-
gence is not guaranteed if more than one (or none) of either
type of equilibria exists.

Policy learning
There are two forms of policy search, those in which a Q–
function is stored and the policy defines the best action for
each state and those where the policy space is defined by the
probabilities of agents taking an action. These will be re-
ferred to as policy hill–climbing (PHC) and gradient ascent
(GA) respectively. The ‘Win–or–lose–fast’ (WoLF) princi-
ple (Bowling & Veloso, 2001a; 2001b) can be applied to
both PHC and GA algorithms.

WoLF’s main feature is the use of a variable learning rate
that can be set to a high (fast) or low (slow) rate. The
rate changes according to whether the learning agent is cur-
rently doing better or worse than an equilibrium strategy.
The agent chooses a strategy that forms a Nash equilibrium
and if its current strategy receives a higher payoff, then the
learning rate is set to the lower value, allowing other agents
to ‘adapt’ their best response. If the agent receives a pay-
off worse than the equilibrium payoff, then it should learn
quickly in order to find a best response and the learning rate
is set to the larger value. In cooperative games, one might
not want to slow down one’s learning while doing well, but
rather accelerate it. The use of WoLF can help algorithms
converge to a Nash equilibrium, but if that is not the goal,
then one may want to use a different learning algorithm. Re-
sults of WoLF learning in a variety of different games would
be useful to support this claim.

In policy hill–climbing (PHC) algorithms, agents store Q–
functions and update the policy that defines a distribution
over the possible actions in each state. The agents do not
model or take into account the other agents. This is the ap-
plication of single-agent policy learning in a multiagent set-
ting and does not guarantee convergence. Bowling & Veloso

(2001b) show that the use of WoLF with PHC encourages
convergence in stochastic games. WoLF–PHC does not pro-
vide any explicit modelling of the other agents, with the
authors referring to the variable learning rate as implicitly
modelling the other agents. This technique has been shown
to be successful in games with large state spaces (Bowling
& Veloso, 2002).

Peshkin et al. (2000) describe a distributed policy search
algorithm for use in partially observable domains, focusing
on cooperative games where each agent receives a common
reward. Each agent updates their own policy, regardless of
the other agents and searches for a local optima in their own
space. The algorithm converges to a local equilibrium, that
may not be Nash. The agents learn independently of the
others and convergence is primarily due to the cooperative
game setting.

Gradient ascent algorithms do not store any Q–function,
though they require a full information game, including
knowing the other agent’s policies (or strategies). The joint
strategies of two agents can be seen as being a R

2 space in
which we can search. The probability of agent i taking their
first action and the probability of agent j taking their first ac-
tion define this space. Areas of zero-gradient are equilibria
and can be found by following the path of increasing gra-
dient. Gradient ascent algorithms are local and do not con-
verge to a global maximum. The search space is defined as
a unit square, but the space itself is not, meaning that gradi-
ent ascent can lead off the edge of this square2. This requires
gradients on the boundary to be projected back into the valid
space. GA algorithms explicitly model mixed strategies due
to the definition of the space.

The original work on gradient ascent for multiagents was
the infinitesimal gradient ascent (IGA) algorithm by Singh,
Kearns, & Mansour (2000), shown in table 1. The algo-
rithm guarantees that the agents’ strategies either converge
to a Nash equilibrium or their average payoffs converge to
the payoffs of a Nash equilibrium. This is a useful guaran-
tee, though it has been referred to as a weaker notion of con-
vergence (Bowling & Veloso, 2001a). If the average payoffs
converge then there will be periods where the payoffs are be-
low the average. Incorporating the WoLF principle (WoLF-
IGA) guarantees the convergence for both the strategies and
payoffs to a Nash equilibrium (Bowling & Veloso, 2001a).
However, this is only shown for self–play and WoLF–IGA
vs. IGA in 2–agent, 2–action games. WoLF–IGA changes
the update rate η in Table 1 to ηl i

t , for each agent i at time t
with variable learning rate l.

Preliminary testing of the Hyper–Q algorithm (Tesauro,
2003) show that it is able to obtain a higher reward than an
IGA or PHC algorithm without any WoLF modifications.
The AWESOME algorithm of Conitzer & Sandholm (2003)
takes a very different approach to the previous algorithms
and does not use any Q–learning or policy search technique.
The algorithm computes a Nash equilibrium prior to learn-
ing and reverts to playing the Nash equilibrium strategy if it
detects the other agents playing their corresponding Nash

2The strategies themselves are probabilities limited to the range
[0,1], but the space itself is not bounded.

For the following payoff matrix:
ri j is the payoff to the row agent
ci j is the payoff to the column agent
i is the row agent’s action, j the column agent’s action
α is the probability of the row agent playing their first action
β is the probability of the column agent playing their first action

[

r11, c11 r12, c12
r21, c21 r22, c22

]

We can write the value or expected payoff of
the strategy (α,β) as:
Vr(α,β) = r11(αβ)+ r22(1−α)(1−β)

+r12(1−β)α+ r21(1−α)β

Vc(α,β) = c11(αβ)+ c22(1−α)(1−β)
+c12(1−β)α+ c21(1−α)β

Letting:
u = (r11 + r22)− (r21 + r12) and
u′ = (c11 + c22)− (c21 + c12)

We have gradients:
∂Vr(α,β)

∂α = βu− (r22− r12)
∂Vc(α,β)

∂β = αu′− (c22− c12)

giving update rules:
αt+1 = αt +η ∂Vr(αt ,βt)

∂α
βt+1 = βt +η ∂Vc(αt ,βt)

∂β

Table 1: The Infinitesimal Gradient Ascent algorithm

equilibrium strategy (convergence in self-play). If AWE-
SOME detects the other agents playing a stationary strategy,
then it will play a best response to that strategy. The key
assumption is that all agents compute the same Nash equi-
librium. This is the same problem as Nash–Q, where if the
agents learn different Nash equilibria, there is no conver-
gence. Conitzer & Sandholm state that since the agents use
the same algorithm, this is a reasonable assumption. This
author disagrees with this statement.

Limitations of current approaches
There are a number of limitations that occur in algorithms
for multiagent learning. A partial list is provided below,
along with references to work that suffer from them.

Many of the algorithms lose their convergence guarantees
in the presence of multiple equilibria (Hu & Wellman 1998,
Littman 2001). Convergence should be dependant on the
strategies or actions of other agents, rather than independent
of them (Peshkin et al. 2000, Hu & Wellman 1998, Littman
1994). Strategy convergence should also not be limited to
pure strategies, a problem that many of the Q–learning al-
gorithms suffer because actions are chosen that provide the
maximum value. This leads to a deterministic pure strat-
egy that can be exploited by other algorithms. All gradient
ascent algorithms require the full information of the game,

including payoffs and mixed strategies, to be visible. We
want to avoid this. There is some debate as to whether the
actions of agents are visible or not. This author takes the
view that they are.

A multiagent learning algorithm should take into account
the actions of other agents and have the ability to learn a
mixed strategy. The goal should be to learn a best response
to the strategies of other agents and the current environment.
The best response may not always be a Nash equilibrium.
In addition, we want to avoid the requirement that the full
information of the game be visible.

Learning with unknown information
We now make an attempt to fix one of the limitations of
gradient ascent algorithms, the need for the full information
of the game to be visible. We apply the ideas of Claus &
Boutilier (1997) where each agent maintains beliefs about
the strategies of other agents. A similar idea is alluded to
by Singh, Kearns, & Mansour (2000) where they state that
a stochastic gradient ascent algorithm would be possible if
only the previous action of the other agent was visible. We
assume that only an agent’s action is visible, not their mixed
strategy.

The new algorithm, ‘Gradient Ascent with Predicted Gra-
dients’ (GAPG) is described below for the two-agent, two-
action case.

Let α be the probability of agent 1 taking their first action
and β be the probability that agent 2 takes their first action.
If both agents are playing with GAPG, then we have that
agent 1 keeps a belief, β̂, over agent 2’s mixed strategy and
agent 2 keeps a belief, α̂, over agent 1’s mixed strategy. The
update equations are:

At time t+1:
For agent 1: β̂t+1 = γ∗ β̂t + (1− γ)∗ actCount1

o f games

For agent 2: α̂t+1 = γ∗ α̂t + (1− γ)∗ actCount2
o f games

Table 2: Belief update equations for GAPG

Where γ is the decreasing update rate, actCounti is a count
of how many times the first action has been played by agent
i and “# o f games” is the total number of games that have
been played. After each stage game, actCounti is incre-
mented if agent i played their first action. This update is used
instead of the simpler β̂t+1 = actCount1

o f games , as it allows us to set

β̂0 based on any knowledge that we have. This is essentially
putting a prior on the predicted strategy of the agent. The
update equations also allow us to control the effect of ob-
served actions through our update rate. The form of the up-
date equations means that an agent must view a large amount
of evidence that the opponent has changed their strategy for
it to affect the beliefs of the agent. If an agent has played
5000 games with a pure strategy and then plays a pure strat-

egy with another action, it will take a large number of games
of this new strategy before the the beliefs reflect this.

We modify the gradient ascent updates of Singh, Kearns,
& Mansour (2000) (see Table 1) to move with step size η in
the direction of the believed gradient. GAPG can also be run
with WoLF–IGA, in which case η is replaced by a variable
update, ηli

t .

αt+1 = αt +η ∂Vr(αt ,β̂t)
∂α

βt+1 = βt +η ∂Vc(α̂t ,βt)
∂β

Experiments
Four algorithms are used in testing, minimax–Q, Infinitesi-
mal Gradient Ascent (IGA), IGA with WoLF (IGA–WoLF)
and GAPG with WoLF–IGA. Each algorithm is run against
all the other algorithms (including itself) for a total of ten
tests. Each test consists of a game being played 50000 times
and each test is run ten times, with the results averaged be-
tween them. Two games were tested thoroughly, the zero–
sum Matching Pennies and Prisoner’s Dilemma, shown in
Figure 1. We also provide a small set of results for the games
Chicken and Battle of the Sexes. The payoff matrices are
generated using the GAMUT game generator (Nudelman et
al., 2004). Each algorithm begins with the probability of
choosing the first action set to 0.5. Minimax–Q is given a
high exploration probability in an attempt to prevent a deter-
ministic strategy from being played.

−1, 1 1, −1

1, −1 −1, 1

 0, −4 −3, −3

1, −1 −4, 0

Matching Pennies Prisoner’s Dilemna

Figure 1: Matching Pennies and Prisoner’s Dilemma

For the gradient ascent algorithms, if the gradient step
goes outside of the unit square, then the strategy is set to the
boundary point. The minimax–Q algorithm plays the pure
strategy that returns the maxmin value of the payoff matrix,
which guarantees a minimum payoff to the agent.

The parameters are set as follows: for minimax–Q, the
exploration rate is set to 0.8, the discount factor of future
states to 0.9, the learning rate to 0.1 and the learning rate
decay to 0.1. For IGA, the step size is set to 0.16 with the
decay set to 0.999. In WoLF–IGA, the slow learning rate
is 0.008, the fast learning rate to 0.16 and the decay rate to
0.9999954. For GAPG, we use the same learning rates as
WoLF for the learning algorithm, while for the belief up-
dates we use γ = 0.16 and reduce this by 0.9999954 each
step.

The majority of figures concentrate on results involving
GAPG, with Figure 2 providing an overview of the number
of games won by each algorithm in the four different games.
This figure shows what percentage of stage games each al-
gorithm wins against the other for each game. The graph
shows how varied the results are for different games. For
the majority of games, GAPG wins at least half the games

played against the algorithms. The exception being against
WoLF–IGA in Battle of the Sexes and against minimax–Q
in Chicken.

Figure 2: Comparison of algorithms. Height of each bar refers
to the percentage of games in which the algorithm received a higher
payoff than the other.

The primary motivation for using GAPG is its use of
predicted strategies and this is shown in Figure 3. The
difference in prediction against minimax–Q is due to the
high exploration rate of minimax–Q, meaning that it often
chooses its action randomly. Against IGA the strategy is
predicted exactly (the two plots are indistinguishable in the
figure), with similar results for GAPG predicting against it-
self and against WoLF-IGA. In other comparisons, GAPG
effectively tracks the strategies of an opponent even if the
opponent is constantly changing their strategy.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−0.5

0

0.5

1

1.5

P
ro

ba
bi

lit
y

of
 o

pp
on

en
t t

ak
in

g
th

ei
r

fir
st

 a
ct

io
n

Stage Games

Predicted minimax−Q opponent strategy
Actual minimax−Q opponent strategy
Predicted IGA opponent strategy
Actual IGA opponent strategy

Figure 3: Predicated vs Actual strategy in Prisoner’s
Dilemma

Figure 4 shows the expected value of the GAPG algorithm
against the other algorithms in Matching Pennies. If a Nash

equilibrium strategy is played, the expected value of the
game is 0. When playing against minimax–Q, the expected
value constantly oscillates near 1 (the graph makes it some-
what difficult to view this) and this shows how minimax–Q
plays a pure strategy and GAPG learns a best response strat-
egy to this. Playing against itself, the oscillation can be inter-
preted as the learner changes its strategy, then after a while,
the opponent changes theirs and this sequence is repeated.
This is due to GAPG adapting its strategy based on what
it believes the opponents is playing. The oscillation occurs
around the Nash equilibrium value. The positive expected
value against IGA shows that GAPG is able to take a small
advantage of the strategy played by IGA. Against WoLF–
IGA, the expected value is around zero, showing how both
algorithms learn a Nash equilibrium strategy.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

G
A

P
G

s
E

xp
ec

te
d

va
lu

e
of

 M
at

ch
in

g
P

en
ni

es

Stage Games

GAPG vs GAPG
GAPG vs IGA
GAPG vs minimax−Q
GAPG vs IGA−WoLF

Figure 4: Expected value of Matching Pennies

One of the goals of the learning algorithm is to learn a best
response to the strategy of the other agents. Figure 5 shows
the strategy learned by GAPG against the other algorithms in
Matching Pennies. Against IGA and IGA-WoLF, the Nash
equilibrium strategy of 0.5 is learned, while against itself, it
oscillates around the equilibrium strategy. However, it does
not show signs signs of convergence to the Nash equilibrium
strategy. The strategy against minimax–Q is very different
due to minimax–Q playing a pure strategy and GAPG ex-
ploiting this for higher reward.

Looking at Figures 4 and 5 one can see the expected value
changing as GAPG’s strategy changes.

Concluding remarks
We have presented a new algorithm, Gradient Ascent with
Predicted Gradients, that uses the predicted strategy of an
opponent to learn with a gradient ascent algorithm. Prelim-
inary results of this algorithm against three algorithms in a
repeated game setting, show promising results. GAPG is
able to effectively predict the strategy of opponents, often
doing so exactly. In the learning of a best response, the al-
gorithm learns a strategy that returns the Nash equilibrium

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G

A
P

G
s

P
ro

ba
bi

lit
y

of
 p

la
yi

ng
 a

ct
io

n
1

Stage Games

GAPG vs GAPG
GAPG vs IGA
GAPG vs minimax−Q
GAPG vs IGA−WoLF

Figure 5: GAPG strategy in Matching Pennies

value of the game or that exploits the strategy of an oppo-
nent. However, as was shown in Figure 2, the results can
vary between different games.

Future experimentation will test GAPG in games with
more than 2 agents and 2 actions per agent. At the time of
this report, apart from results in Bowling & Veloso (2001b)
and claims made in Conitzer & Sandholm (2003), there has
been very little testing of these larger sized games. Other
possible future goals include making gradient ascent a glob-
ally optimal technique, possibly through preprocessing of
the strategy space and applying gradient ascent to stochastic
games where different strategies would be used in different
stages.

Acknowledgements
Many thanks to Kevin Leyton-Brown for his helpful com-
ments, feedback and for providing access to the GAMUT
game generator. Thanks to Jennifer Wortman for her help
with the GAMUT game generator. Thanks to Sarah Manske
for her comments and suggestions on an earlier version of
the paper.

References
Bagnell, J.; Kakade, S.; Ng, A.; and Schneider, J. 2003. Policy

search by dynamic programming. In NIPS ’03, Neural Informa-
tion Processing 16.

Bowling, M., and Littman, M. 2003. Multiagent learning: A game
theoretic perspective. Slides for Tutorial at IJCAI 2003, 18th
Int. Joint Conf. on AI.

Bowling, M., and Veloso, M. 2000. An analysis of stochastic game
theory for multiagent reinforcement learning. CMU-CS 00-165,
Carnegie Mellon University.

Bowling, M., and Veloso, M. 2001a. Convergence of gradient
dynamics with a variable learning rate. In ICML ’01, 18th Int.
Conf. on Machine Learning.

Bowling, M., and Veloso, M. 2001b. Rational and convergent
learning in stochastic games. In IJCAI ’01, Int. Joint Conf. on
Artificial Intelligence.

Bowling, M., and Veloso, M. 2002. Scalable learning in stochastic
games. In AAAI Workshop on Game Theoretic and Decision
Theoretic Agents.

Brafman, R., and Tennenholtz, M. 2003. Learning to coordinate
efficiently: A model-based approach. Journal of Artificial Intel-
ligence Research 19:11 – 23.

Claus, C., and Boutilier, C. 1997. The dynamics of reinforcement
learning in cooperative multiagent systems. In AAAI ’97, Amer-
ican Association of Artificial Intelligence Workshop on Multia-
gent Learning, 746 – 752.

Conitzer, V., and Sandholm, T. 2003. AWESOME: A general mul-
tiagent learning algorithm that converges in self-play and learns
a best response against stationary opponents. In ICML ’03, 20th
Int. Conf. on Machine Learning, 83–90.

Fudenberg, D., and Levine, D. 1999. The Theory of Learning in
Games. Cambridge, Massachusetts: MIT Press.

Hu, J., and Wellman, M. 1998. Multiagent reinforcement learning:
Theoretical framework and an algorithm. In ICML ’98, 15th Int.
Conf. on Machine Learning, 242 – 250.

Littman, M. 1994. Markov games as a framework for multi-agent
reinforcement learning. In ICML ’94, 11th Int. Conf. on Ma-
chine Learning, 157 – 163.

Littman, M. 2001. Friend-or-foe Q-learning in general-sum games.
In ICML ’01, 18th Int. Conf. on Machine Learning, 322 – 328.

Nudelman, E.; Wortman, J.; Leyton-Brown, K.; and Shoham, Y.
2004. Run the GAMUT: A comprehensive approach to evalu-
ating game-theoretic algorithms. In AAMAS ’04, 3rd Int. Joint
Conf. on Autonomous Agents and Multi Agent Systems.

Peshkin, L.; Kim, K.; Meuleau, N.; and Kaelbling, L. 2000. Learn-
ing to cooperate via policy search. In UAI ’00, 16th Conf. on
Uncertainty in Artificial Intelligence.

Shoham, Y.; Powers, R.; and Grenager, T. 2003. Multi-agent
reinforcement learning: a critical survey. Unpublished survey.
http://robotics.stanford.edu/˜shoham/.

Singh, S.; Kearns, M.; and Mansour, Y. 2000. Nash convergence
of gradient dynamics in general-sum games. In UAI ’00, 16th
Conf. on Uncertainty in Artificial Intelligence.

Tesauro, G. 2003. Extending q-learning to gneral adaptive multi-
agent systems. In NIPS ’03, Advances in Neural Information
Processing Systems 16.

Vidal, J., and Durfee, E. 1998. The moving target function problem
in multi-agent learning. In ICMAS ’98, 3rd Int. Conf. on Multi-
Agent Systems.

