Computational Techniquesfor Finding Nash Equilibria of Perfect Recall Games

Albert Xin Jiang
Department of Computer Science, University of British Columbia
jiang@cs.ubc.ca

Abstract

Interactions between agents that involve sequential decisions
can be modeled as games in extensive form. In this pa-
per, we survey methods for finding Nash Equilibria of ex-
tensive form games with perfect recall. We focus on methods
that exploit the structure of the games to make the compu-
tation more tractable, rather than algorithms that solve nor-
mal form games directly. We cover topics like sequence form
and Multi-Agent Influence Diagrams, and discuss future di-
rections in this research area.

I ntroduction

Many situations involving interactions between independent
agents can be modeled and analyzed by game theory. Game
theory has been successfully applied to economics and com-
puter science, among other disciplines.

Finding Nash equilibria of games is central to game theo-
retic analysis. We refer the reader to (McKelvey & McLen-
nan 1996) for a comprehensive survey on the computation of
Nash equilibria. In this paper, we survey methods for finding
Nash equilibria of extensive form games with perfect recall.

Extensive Form Games

The extensive form is a natural way to model interactions
between agents that involve sequential decisions. The game
is represented as a tree of decision nodes, and actions are
represented as edges in the tree.

In a perfect information game, each player has complete
information of the game’s history. In other words, each
player knows exactly which node in the game tree she is
currently in. In an imperfect information game, agents are
uncertain about which node they’re currently at. This uncer-
tainty is represented using information sets: an information
set u for player i is a set of player i’s decision nodes; when
player i is in one of the nodes in the information set, she
cannot distinguish which node in u she is at.

A player is said to have perfect recall if she remembers all
her previous decisions, and does not forget any information
once she observes it. The player has imperfect recall oth-
erwise. Games with imperfect recall are generally hard to

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

analyze. In this paper we study games in which all players
have perfect recall.

We can also introduce chance nodes into the game tree.
A chance node is just like a decision node, but it is played
by the player “Nature”, and the actions from this node are
played using a fixed probability distribution. Using chance
nodes and information sets, we can represent Bayesian
games as extensive form games. We refer the reader to
Chapter 3.6 of (Shoham 2003) for details.

Finding Nash Equilibria

It is generally straightforward to construct the extensive
form representation of games, but computing Nash equilib-
ria from the extensive form is a computationally hard prob-
lem. One subclass of games that can be solved relatively
easily is perfect information games. In a perfect information
game, we can apply backward induction to the nodes, which
takes linear time in the size of the game tree. Equivalently,
we can do a top-down search from the root of the game
treel. In two-person zero-sum perfect information games,
there exist efficient pruning methods for the searching al-
gorithm (Knuth & Moore 1975). Similar pruning methods
exist for games with chance nodes (Hauk 2004). Backward
induction can also be applied to certain simple imperfect in-
formation games, for example Oshi-zumo (Buro 2003) and
finitely repeated Prisoner’s Dilemma.

For general imperfect information games, backward in-
duction does not apply, because a player might not know
which exact subtree she is in. A naive way to compute Nash
equilibria in these games is to convert them to normal form,
then solve the normal form games using the standard algo-
rithms:

e For two-person zero-sum games, the normal form can be
formulated as a linear program, and can be solved by stan-
dard linear programming (LP) algorithms in polynomial
time (in the size of the normal form).

e For 2-person general-sum games, the normal form can
be formulated as a Linear Complementarity Problem
(LCP), and can be solved by the Lemke-Howson algo-
rithm (Lemke & Howson 1964). Lemke-Howson has a

1This is called the Minimax algorithm in Al literature on two-
person zero-sum perfect information games.



worst-case exponential running time, but it often does bet-
ter.

e For N-person games where N > 2, the problem becomes
non-linear, and as a result much harder to solve. Govindan
and Wilson’s continuation method (Govindan & Wilson
2003) is one of the best algorithms for this.

The above approach has a fatal flaw: the size of a nor-
mal form is exponentially larger than the corresponding ex-
tensive form. For extensive form games with large trees, it
becomes impossible to represent the games as normal form;
even if we can fit the normal form in memory, computation
would be very slow: the “polynomial-time” LP algorithms
for two-person zero-sum games is actually exponential time
in the size of the extensive form. As a result, only toy prob-
lems with small trees can be solved using this approach.

In this paper, we focus on methods that exploit the struc-
ture of games to make the computation more tractable. How
should we attack this problem? First, we need to find repre-
sentations of games that are compact, and at the same time
suitable for computation of Nash equilibria. Based on the
compact representations, we wish to construct efficient al-
gorithms to compute Nash equilibria, exploiting the struc-
ture of the game as much as possible. Also, certain sub-
classes of games may have additional structure, so there may
be specific representations and algorithms suitable for these
games. When direct computation of Nash equilibria is in-
tractable, knowledge on the structure of the games may still
help us to design approximation algorithms or heuristics that
produce “reasonably good” strategies.

Overview

In the next section we establish the basic notations. Then
we introduce the sequence form representation (Koller,
Megiddo, & von Stengel 1994) and Multi-Agent Influence
Diagrams (Koller & Milch 2001). We will then discuss pos-
sible future directions, and give some concluding remarks.

Notation

The basic structure of an extensive form game is a finite di-
rected tree whose nodes denote game states. The internal
nodes are either decision nodes for one of the players or
chance nodes. The payoff function h determines a payoff
for each player on each leaf node.

The set of decision nodes is partitioned in to information
sets. Each information set « belongs to exactly one player
k. Since the player cannot distinguish between nodes in the
same information set, the player must have the same set C,
of choices at each node a in . The set of all information
sets of player k is denoted by U*.

A pure strategy 7* of player k specifies a choice at each
information set in U*. A mixed strategy p* of player k is
a probability distribution on her pure strategies. A mixed
strategy profile p is a tuple that consists of mixed strategies
for each player.

Sequence Form

The sequence form representation (Koller, Megiddo, & von
Stengel 1994) is an elegant and compact representation of

Figure 1: A simple game tree

extensive form games. It is similar in form to the normal
form representation, but much smaller.

Let us start with an example. Figure 1 has a very sim-
ple game tree with two players, 1 and 2. The circles rep-
resent decision nodes, and nodes connected by dashed lines
are in the same information set. Payoffs to player 1, de-
noted by h'(a), are associated with each leaf node a. This
game is zero-sum, so player 2’s payoffs can be calculated by
h?(a) = —h*(a). Choices by players are labeled by alpha-
bets.

Mixed strategies assign a probability to each pure strategy.
It turns out that much of this information is redundant. We
make the observation that the expected payoff to player 1
is a linear function of the probabilities of reaching the leaf

nodes:
H(u) =" Pry(a)h(a) &)

where Pr,(a) is the probability of reaching leaf node
a given the strategy profile u. We would like to use
Pr,(a) to represent strategies, since it’s much more com-
pact than mixed strategies. However, Pr,(a) depends on
both player’s strategies. We need to factor Pr,,(a) into parts
that depends on player 1 and parts that depend on player 2.
Notice that Pr,(a) only depends on players’ choices along
the path from the root to a.

We define player 1’s sequence on node a, denoted by
o'(a), to be the string of player 1’s choices along the path
from root to a. If a is the root, it is the empty sequence (. In
the figure, player 1’s sequence for the rightmost leaf is b f.

We then define the realization weight of a node a under
a mixed strategy #*, denoted by ¥ (c*(a)), to be the prob-
ability of node a not excluded by 1. Let 3(a) denote the
product of chance probabilities along the path to a. Then
Pr,(a) can be factored as

Pry(a) = p' (0" (a)n*(0*(a))B(a) O]

(Koller, Megiddo, & von Stengel 1994) showed that if two

mixed strategies of player 1 generate the same realization

weights, then the expected payoffs for these two strategies

are equal, no matter what strategies player 2 chooses. Re-

alization weights therefore capture all relevant information
about mixed strategies, and are much more compact.



So instead of a vector of probabilities on pure strategies,
we would like to use a vector of realization weights on se-
quences to represent players’ strategies. However, an arbi-
trary vector may be inconsistent. (Koller, Megiddo, & von
Stengel 1994) showed that if the game has perfect recall, a
vector of realization weights z, for player 1 is consistent iff
they satisfy certain linear constraints.

For example in Figure 1, the root is always reached, so
zg = 1. Also, Ty = Tq + Ths and z, = Tpe + Tyf- Player
2’s vector has similar constraints. Intuitively, these linear
constraints encode the tree structure of the extensive form.
The total number of constraints is at most the size of the tree.

The payoff function can be computed from Equations 1
and 2 easily. The resulting sequence form representation
is remarkably similar to the normal form. The only major
difference is that in the normal form, the only constraints
are that the mixed strategy probabilities sum to 1 for each
player; whereas in the sequence form, we have the linear
constraints that encodes the tree structure. As a result, most
of the algorithms for finding Nash equilibria on normal form
can be applied to the sequence form after some modifica-
tions.

For two-person zero-sum games, standard LP algorithms
can be directly applied to the sequence form. For two-person
general sum games, we can use Lemke’s algorithm(Lemke
1965), which is related to Lemke-Howson, to solve the re-
sulting LCP. For general N-person games, Govindan and
Wilson’s continuation method can be modified to work on
the sequence form(Govindan & Wilson 2002). Since the se-
quence form is exponentially smaller than the corresponding
normal form, algorithms on sequence form are exponentially
faster than their normal form counterparts.

After we have found our realization weights at a Nash
equilibrium, How do we actually play the game? It turns out
that for perfect recall games, realization weights are closely
related to behavioral strategies: the realization weight for
player 1 on a is just the product of player 1’s behavioral
strategy probabilities along the path from root to a. Given
the realization weights for player 1, her behavioral strate-
gies can be easily computed. For example in Figure 1, the
behavioral probabilities of choosing g is %—f’

Comments

Sequence form made the computation of equilibria on game
trees much more tractable. It has been used to compute
near-optimal strategies for two-person poker(Billings et al.
2003). But compared to algorithms for perfect informa-
tion games, algorithms on sequence form are still space-
intensive: the entire sequence form has to be stored in mem-
ory during computation.

The payoff and constraint matrices are sparse, and they
exhibit certain structures. Rather than using general-purpose
algorithms like Lemke’s to compute equilibria, can we find
algorithms that exploit the particular structures of sequence
form?

MAID

Independence is an important concept in Bayesian inference.

By exploiting independence between random variables, we
can efficiently compute probabilities on Bayesian networks.

A number of researchers have applied this concept to the
computation of Nash equilibria in games, by representing
the game as a graph, and exploiting independence between
nodes. Graphical Games(Kearns, Littman, & Singh 2001),
Local Effect Games(Leyton-Brown & Tennenholtz 2003),
and Multi-Agent Influence Diagrams (Koller & Milch 2001)
are examples of this.

In this section, we take a brief look at Multi-Agent Influ-
ence Diagrams (MAIDs), which applies to games involving
sequential decisions®. MAIDs are extensions of influence
diagrams to the multi-agent case. A MAID is represented as
a directed acyclic graph over nodes of three types: chance,
decision and utility. A fixed conditional probability distri-
bution (CPD) is associated with each chance node. Each de-
cision node is associated with a single agent. The parents of
a decision node are the variables the agent can observe when
making that decision. A decision rule for a decision node is
a CPD: a distribution over its values for each instantiation of
its parents. A utility node takes real values as a deterministic
function of its parents. An agent’s utility is the sum of the
values at her utility nodes. Each agent tries to choose her
decision rules that maximize her expected payoff.

A MAID can be converted to a extensive form game, and
vice versa. If the game tree is very symmetric, the MAID can
often be smaller than the extensive form. If the game tree is
asymmetric, the CPD tables can become very large, and the
MAID could be much larger than the extensive form. But if
we represent the CPDs and decision rules as trees rather than
tables, our MAID representation is always no larger than the
extensive form.

Now that we have our representation, we would like to
compute Nash equilibria on MAIDs, exploiting their graph-
ical structures. We can define strategic relevance between
decision nodes, similar to the concept of probabilistic depen-
dence in Bayesian networks. We can then construct the rel-
evance graph, which is a directed graph on decision nodes.
In order to optimize the decision rule for a decision node D,
we need to know the decision rules for all its parents in the
relevance graph. When the relevance graph is acyclic, we
can construct a topological ordering or the decision nodes,
and then apply a backward induction procedure similar to
the one for perfect information games to optimize the de-
cision rules. If the relevance graph is cyclic, we can con-
vert it to a component graph which is acyclic. the nodes
of the component graph are strongly connected components
(SCCs), which contains the cycles in the relevance graph.
We can now construct a topological ordering over the SCCs,
and solve them in order. This divide-and-conquer algorithm
works only if agents have perfect recall.

We have not yet specified how to solve each SCC. One
can simply expand the SCC into a game tree, and solve the
game tree using for example the sequence form algorithms
in the previous section. (Blum, Shelton, & Koller 2003) pro-
poses an continuation method for solving strongly connected

2See Mark Crowley’s course project for a more in-depth treat-
ment of MAIDs



MAIDs. It is a modified version of the continuation method
for extensive form, exploiting the similarity between MAIDs
and Bayesian networks by using the clique tree algorithm
from Bayesian inference to speed up the computation of cer-
tain probabilities.

Comments

(Blum, Shelton, & Koller 2003) showed that in a MAID with
perfect recall, each decision node must have incoming edges
from all of its previous actions and all parents of previous
actions. The agent’s decision rule for the last decision has
the same size as the sequence form, because it must have an
entry for every distinct sequences for the agent. This size
grows exponentially with the length of the sequence. Thus,
in MAIDs where long sequences of decisions are involved,
the size of representation can still be huge. In the Future
Work section of (Koller & Milch 2001), the authors propose
to identify parents of decision nodes that are irrelevant to
the strategy selection, and drop these edges. No concrete
algorithm were given though.

Future Directions

In this section, we look at research directions that are cur-
rently unexplored, but (we think) are worth a closer look.

Small Support

The support of a mixed strategy is the set of pure strate-
gies that has a positive probability. Empirically, many games
have Nash equilibria with small support.

Based on this observation, (Porter, Nudelman, & Shoham
2004) constructed a couple of simple search algorithms to
find a Nash equilibrium in a normal form game. Their algo-
rithms are based on the fact that given a support, it is fairly
easy to find a Nash equilibrium consistent with the support,
if one exists. The algorithms basically search over all pos-
sible supports, starting from small ones. The search termi-
nates when a Nash equilibrium is found.

There are an exponential number of supports, so the al-
gorithms could take exponential time in the number of pure
strategies to terminate. But if the game has a Nash equi-
librium with small support, The algorithms would find it
quickly. The authors tested the algorithms on a set of
games, and they performed surprisingly well, outperform-
ing Lemke-Howson for two-player games.

Can this be applied to extensive form games? (Koller &
Megiddo 1995) proved that for any mixed strategy, there
exists an equivalent mixed strategy with a support size no
greater than the size of the game tree. They constructed a
similar algorithm to search for equilibria in imperfect recall
games.

If we apply the same algorithm to perfect recall games,
will it find a Nash equilibrium with small support quickly,
if one exists? The answer is unfortunately negative. The
reason is that the number of pure strategies is exponential to
the size of the game tree, so even though we can limit our
search to small supports, we still have a lot to choose from.
In fact, just enumerating all the pure strategies (i.e. support
has size 1) takes exponential time.

A more sensible approach is to apply this search algorithm
to the sequence form of the game. First we have to define the
concept of support for the sequence form. Say we define the
support of player i’s strategy to be the subset of nodes in the
tree that are not excluded by player i’s strategy. This corre-
sponds to the set of player i’s sequences that has a positive
realization weight. (Koller, Megiddo, & von Stengel 1994)
shows that we can formulate the problem of finding Nash
equilibria of two-person games of sequence form as a gen-
eral LCP. Now rather than using Lemke’s algorithm to solve
it, we can try to use the searching algorithm instead. Now
the problem is how to generate small supports that are con-
sistent with the tree structure. We think this is definitely an
area worth investigating.

Conclusion

We have surveyed two major methods of computing Nash
equilibria in perfect recall games, sequence form and
MAIDs. Sequence form is a compact representation of game
trees that is similar in form to normal form representations.
As a result, we can use algorithms for normal form games
on the sequence form, avoiding the exponential blow-up in-
volved in converting game trees to normal form. MAIDs are
extensions of influence diagrams to the multi-agent setting.
When the games are symmetric, MAIDs can be a very com-
pact representation. We looked at algorithms that exploit the
graphical structure of MAIDs to compute Nash equilibria
efficiently.

We then looked at a relatively unexplored area: finding
Nash equilibria with small supports using search algorithms.
We looked at possible ways to extend the algorithms on nor-
mal from to extensive games.

Overall, many areas in this research field are relatively
unexplored. For example, can we find representations and
algorithms that exploits the structure in Bayesian games?
There are many interesting research opportunities.

References
Billings, D.; Burch, N.; A.Davidson; Holte, R,;
J.Schaeffer; Schauenberg, T.; and Szafron, D. 2003. Ap-
proximating game-theoric optimal strategy for full-scale
poker. In Proceedings of IJCAI.
Blum, B.; Shelton, C.; and Koller, D. 2003. A continu-
ation method for nash equilibria in structured games. In
Proceedings of 1JCAL.
Buro, M. 2003. Solving the oshi-zumo game. In Pro-
ceedings of the Advances in Computer Games Conference
10.
Govindan, S., and Wilson, R. 2002. Structure theorems for
game trees. In Proc. Natl Academy of Sciences.
Govindan, S., and Wilson, R. 2003. A global newton
method to compute nash equilibria. Journal of Economic
Theory.
Hauk, T. 2004. Search in trees with chance nodes. Master’s
thesis, University of Alberta.
Kearns, M.; Littman, M. L.; and Singh, S. 2001. Graphical
models for game theory. In Proc. UAI.



Knuth, D., and Moore, R. 1975. An analysis of alpha—beta
pruning. Artificial Intelligence 6:293-326.

Koller, D., and Megiddo, N. 1995. Finding mixed strate-
gies with small supports in extensive games. International
Journal of Game Theory.

Koller, D., and Milch, B. 2001. Multi-agent influence dia-
grams for representing and solving games. In Proc. 1JCAL.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proc. 26th STOC.

Lemke, C., and Howson, J. 1964. Equilibrium points of
bimatrix games. Journal of the Society for Industrial and
Applied Mathematics.

Lemke, C. E. 1965. Bimatrix equilibrium points and math-
ematical programming. Management Sciences.
Leyton-Brown, K., and Tennenholtz, M. 2003. Local-
effect games. In Proc. 1JCAI.

McKelvey, R., and McLennan, A. 1996. Computation of
equilibria in finite games. In Handbook of Computational
Economics, volume I. Elsevier. 87-142.

Porter, R.; Nudelman, E.; and Shoham, Y. 2004. Simple
search methods for finding a nash equilibrium. submitted
for publication.

Shoham, Y. 2003. Multi Agent Systems (book draft).



