CPSC 322: Learning Goals

1 What is AI?

e Identify real world examples that make use of deterministic, goal-driven agents

e Differentiate between single/static and sequential problems.

2 Search

e Assess the size of the search space of a given search problem.
e Implement the generic solution to a search problem.
e Evaluate the complexity of search space in terms of number of nodes, paths, and frontier end nodes.

e Define/read/write/trace/degub different search algorithms (with/without cost)(informed/uninformed)(pruning
cycles and repeated states) (including dynamic programming)

e Determine basic properties of search algorithms: completeness, optimality, time and space complexity
of search algorithms.

e Select the most appropriate search algorithms for specific problems. BFS vs DFS - A* vs. B&B vs
IDA* vs MBA*

e Construct admissible heuristics for appropriate problems. Verify heuristic dominance (the proposition
that one heuristic is a weakly tighter bound than another). Combine admissible heuristics.

e Formally prove A* optimality.

e Define optimal efficiency and formally prove that A* is optimally efficient.

3 Constraint Satisfaction Problems (CSPs)

e Define possible worlds in term of variables and their domains. Compute number of possible worlds on
real examples.

e Specify constraints to represent real-world problems differentiating between unary and k-ary constraints
and between list vs. function format. Verify whether a possible world satisfies a set of constraints (i.e.,
whether it is a model/solution).

e Implement the Generate-and-Test Algorithm. Explain its disadvantages.

e Solve a CSP by search (specify neighbors, states, start state, goal state). Compare strategies for CSP
search. Implement pruning for DFS search in a CSP.

e Build a constraint network for a set of constraints. Verify whether a network is arc consistent.

e Define/read/write/trace/degub the arc consistency algorithm. Compute its complexity and assess its
possible outcomes.

e Define/read/write/trace/degub domain splitting and its integration with arc consistency.



4 Stochastic Local Search

e Implement local search for a CSP. Implement different ways to generate neighbors.

e Implement scoring functions to solve a CSP by local search through either greedy descent or hill-
climbing.

e Implement SLS with random steps and random restart to address limitation of greedy descent / hill
climbing.

e Compare different SLS algorithms using runtime distributions.
e Implement a tabu list.
e Implement the simulated annealing algorithm.

e Implement population based SLS algorithms: beam search and genetic algorithms. Discuss pros and
cons.

5 Planning

e Represent a planning problem with the STRIPS representation. Explain the STRIPS assumption.

e Solve a planning problem by search (forward planning). Specify states, successor function, goal test
and solution.

e Construct and justify a heuristic function for forward planning.

e Translate a planning problem represented in STRIPS into a corresponding CSP problem (and vice
versa). Solve the planning problem by extending the horizon until a solvable CSP is found.

6 Logic

e Verify whether an interpretation is a model of a knowledge base expressed in propositional definite
clause logic.

e Verify when a conjunction of atoms is a logical consequence of a knowledge base.

e Define/read/write/trace/debug the bottom-up proof procedure.

e Prove that bottom-up procedure is sound and complete.

e Model a relatively simple domain with propositional definite clause logic.

e Define/read/write/trace/debug the top-down proof procedure as a search problem.

e Express knowledge in complex domains using objects and relations. List the advantages of this ap-
proach.

e Define the syntax and semantics of Datalog.



7

Reasoning Under Uncertainty

Define and give examples of random variables, their domains and probability distributions.
Calculate the probability of a proposition f given u(w) for the set of possible worlds.
Define a joint probability distribution.

Given a joint, compute distributions over any subset of the variables.

Prove the formula to compute P(h|e).

Derive the Chain Rule and Bayes’ Rule.

Define and use Marginal Independence.

Define and use Conditional Independence.

Build a Belief Network for a simple domain.

Classify the types of inference.

Compute the representational saving in terms on number of probabilities required.

Given a simple belief network, determine whether one variable is conditionally independent of another
variable, given a third variable.

Define factors. Derive new factors from existing factors. Apply operations to factors, including assign-
ing, summing out and multiplying factors.

Carry out variable elimination by using factor representation and using the factor operations. Use
techniques to simplify variable elimination. Prune the belief network based on conditional indepen-
dence.

Specify a Markov Chain and compute the probability of a sequence of states.

Decision Theory

Compare and contrast stochastic single-stage (one-off) decisions vs. multistage decisions.
Define a utility function on possible worlds.
Define and compute optimal one-off decision (max expected utility).

Represent one-off decisions as single stage decision networks and compute optimal decisions by variable
elimination.

Represent sequential decision problems as decision networks. Explain the non-forgetting property for
sequential decision problems.

Verify whether a possible world satisfies a policy and define the expected value of a policy.
Compute the number of policies for a decision problem.

Compute the optimal policy by variable elimination.

Effectively represent indefinite/infinite decision processes.

Compute the probability of a sequence of actions in a Markov Decision Process (MDP).

Compute number of policies for an MDP and define the computation of the expected total reward of
a policy for an MDP.

Explain influence of rewards on optimal policy.



