
CPSC 322: Learning Goals

1 What is AI?

• Identify real world examples that make use of deterministic, goal-driven agents

• Differentiate between single/static and sequential problems.

2 Search

• Assess the size of the search space of a given search problem.

• Implement the generic solution to a search problem.

• Evaluate the complexity of search space in terms of number of nodes, paths, and frontier end nodes.

• Define/read/write/trace/degub different search algorithms (with/without cost)(informed/uninformed)(pruning
cycles and repeated states) (including dynamic programming)

• Determine basic properties of search algorithms: completeness, optimality, time and space complexity
of search algorithms.

• Select the most appropriate search algorithms for specific problems. BFS vs DFS - A∗ vs. B&B vs
IDA∗ vs MBA∗

• Construct admissible heuristics for appropriate problems. Verify heuristic dominance (the proposition
that one heuristic is a weakly tighter bound than another). Combine admissible heuristics.

• Formally prove A∗ optimality.

• Define optimal efficiency and formally prove that A∗ is optimally efficient.

3 Constraint Satisfaction Problems (CSPs)

• Define possible worlds in term of variables and their domains. Compute number of possible worlds on
real examples.

• Specify constraints to represent real-world problems differentiating between unary and k-ary constraints
and between list vs. function format. Verify whether a possible world satisfies a set of constraints (i.e.,
whether it is a model/solution).

• Implement the Generate-and-Test Algorithm. Explain its disadvantages.

• Solve a CSP by search (specify neighbors, states, start state, goal state). Compare strategies for CSP
search. Implement pruning for DFS search in a CSP.

• Build a constraint network for a set of constraints. Verify whether a network is arc consistent.

• Define/read/write/trace/degub the arc consistency algorithm. Compute its complexity and assess its
possible outcomes.

• Define/read/write/trace/degub domain splitting and its integration with arc consistency.

1



4 Stochastic Local Search

• Implement local search for a CSP. Implement different ways to generate neighbors.

• Implement scoring functions to solve a CSP by local search through either greedy descent or hill-
climbing.

• Implement SLS with random steps and random restart to address limitation of greedy descent / hill
climbing.

• Compare different SLS algorithms using runtime distributions.

• Implement a tabu list.

• Implement the simulated annealing algorithm.

• Implement population based SLS algorithms: beam search and genetic algorithms. Discuss pros and
cons.

5 Planning

• Represent a planning problem with the STRIPS representation. Explain the STRIPS assumption.

• Solve a planning problem by search (forward planning). Specify states, successor function, goal test
and solution.

• Construct and justify a heuristic function for forward planning.

• Translate a planning problem represented in STRIPS into a corresponding CSP problem (and vice
versa). Solve the planning problem by extending the horizon until a solvable CSP is found.

6 Logic

• Verify whether an interpretation is a model of a knowledge base expressed in propositional definite
clause logic.

• Verify when a conjunction of atoms is a logical consequence of a knowledge base.

• Define/read/write/trace/debug the bottom-up proof procedure.

• Prove that bottom-up procedure is sound and complete.

• Model a relatively simple domain with propositional definite clause logic.

• Define/read/write/trace/debug the top-down proof procedure as a search problem.

• Express knowledge in complex domains using objects and relations. List the advantages of this ap-
proach.

• Define the syntax and semantics of Datalog.

2



7 Reasoning Under Uncertainty

• Define and give examples of random variables, their domains and probability distributions.

• Calculate the probability of a proposition f given µ(ω) for the set of possible worlds.

• Define a joint probability distribution.

• Given a joint, compute distributions over any subset of the variables.

• Prove the formula to compute P (h|e).

• Derive the Chain Rule and Bayes’ Rule.

• Define and use Marginal Independence.

• Define and use Conditional Independence.

• Build a Belief Network for a simple domain.

• Classify the types of inference.

• Compute the representational saving in terms on number of probabilities required.

• Given a simple belief network, determine whether one variable is conditionally independent of another
variable, given a third variable.

• Define factors. Derive new factors from existing factors. Apply operations to factors, including assign-
ing, summing out and multiplying factors.

• Carry out variable elimination by using factor representation and using the factor operations. Use
techniques to simplify variable elimination. Prune the belief network based on conditional indepen-
dence.

• Specify a Markov Chain and compute the probability of a sequence of states.

8 Decision Theory

• Compare and contrast stochastic single-stage (one-off) decisions vs. multistage decisions.

• Define a utility function on possible worlds.

• Define and compute optimal one-off decision (max expected utility).

• Represent one-off decisions as single stage decision networks and compute optimal decisions by variable
elimination.

• Represent sequential decision problems as decision networks. Explain the non-forgetting property for
sequential decision problems.

• Verify whether a possible world satisfies a policy and define the expected value of a policy.

• Compute the number of policies for a decision problem.

• Compute the optimal policy by variable elimination.

• Effectively represent indefinite/infinite decision processes.

• Compute the probability of a sequence of actions in a Markov Decision Process (MDP).

• Compute number of policies for an MDP and define the computation of the expected total reward of
a policy for an MDP.

• Explain influence of rewards on optimal policy.

3


