Reasoning Under Uncertainty: Belief Networks

CPSC 322 - Uncertainty 4

Textbook §6.3

Reasoning Under Uncertainty: Belief Networks

- < ≣ → CPSC 322 - Uncertainty 4, Slide 1

< ∃ >

Lecture Overview

Reasoning Under Uncertainty: Belief Networks

CPSC 322 - Uncertainty 4, Slide 2

æ

・ロ・ ・ 日・ ・ 日・ ・ 日・

Marginal independence

Definition (marginal independence)

Random variable X is marginally independent of random variable Y if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$ and $y_k \in dom(Y)$,

$$P(X = x_i | Y = y_j)$$

= $P(X = x_i | Y = y_k)$
= $P(X = x_i).$

That is, knowledge of Y's value doesn't affect your belief in the value of X.

• E • • E • · ·

Conditional Independence

• Sometimes, two random variables might not be marginally independent. However, they can *become* independent after we observe some third variable.

Definition

Random variable X is conditionally independent of random variable Y given random variable Z if, for all $x_i \in dom(X)$, $y_j \in dom(Y)$, $y_k \in dom(Y)$ and $z_m \in dom(Z)$,

$$P(X = x_i | Y = y_j \land Z = z_m)$$

= $P(X = x_i | Y = y_k \land Z = z_m)$
= $P(X = x_i | Z = z_m).$

• That is, knowledge of Y's value doesn't affect your belief in the value of X, given a value of Z.

More examples of conditional independence

- Whether light l1 is lit is independent of the position of light switch s2 given whether there is power in wire w_0 .
 - two random variables that are not marginally independent can still be conditionally independent
- Every other variable may be independent of whether light l1 is lit given whether there is power in wire w_0 and the status of light l1 (if it's ok, or if not, how it's broken).

More examples of conditional independence

- The probability that the Canucks will win the Stanley Cup is independent of whether light *l*1 is lit given whether there is outside power.
 - sometimes, when two random variables are marginally independent, they're also conditionally independent given a third variable.
- But not always...
 - Let C_1 be the proposition that coin 1 is heads; let C_2 be the proposition that coin 2 is heads; let B be the proposition that coin 1 and coin 2 are both either heads or tails.
 - $P(C_1|C_2) = P(C_1)$: C_1 and C_2 are marginally independent.
 - But $P(C_1|C_2, B) \neq P(C_1|B)$: if I know both C_2 and B, I know C_1 exactly, but if I only know B I know nothing.
 - Hence C_1 and C_2 are *not* conditionally independent given B.

(1日) (日) (日)

Lecture Overview

Reasoning Under Uncertainty: Belief Networks

CPSC 322 - Uncertainty 4, Slide 7

æ

・ロ・ ・ 日・ ・ 日・ ・ 日・

Idea of belief networks

Whether l1 is lit $(L1_lit)$ depends only on the status of the light $(L1_st)$ and whether there is power in wire w0. Thus, $L1_lit$ is independent of the other variables given $L1_st$ and W0. In a belief network, W0 and $L1_st$ are parents of $L1_lit$.

Similarly, W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 ($S2_pos$), and the status of switch s2 ($S2_st$).

Idea of belief networks

Whether l1 is lit $(L1_lit)$ depends only on the status of the light $(L1_st)$ and whether there is power in wire w0. Thus, $L1_lit$ is independent of the other variables given $L1_st$ and W0. In a belief network. W0 and $L1_{st}$ are parents of L1 lit.

Similarly, W0 depends only on whether there is power in w1, whether there is power in w2, the position of switch s2 ($S2_pos$), and the status of switch s2 ($S2_st$).

< ≣ >

Components of a belief network

Definition (belief network)

A belief network consists of:

- a directed acyclic graph with nodes labeled with random variables
- a domain for each random variable
- a set of conditional probability tables for each variable given its parents (which includes prior probabilities for nodes with no parents).

• E • • E •

Relating BNs to the joint

Belief networks are compact representations of the joint.

To encode the joint as a BN:

- **1** Totally order the variables of interest: X_1, \ldots, X_n
- **2** Write down the chain rule decomposition of the joint, using this ordering: $P(X_1, ..., X_n) = \prod_{i=1}^n P(X_i | X_{i-1}, ..., X_1)$
- So For every variable X_i , find the smallest set $pX_i \subseteq \{X_1, \ldots, X_{i-1}\}$ such that $P(X_i|X_{i-1}, \ldots, X_1) = P(X_i|pX_i)$.
 - If pX_i ≠ {X₁,...,X_{i-1}}, X_i is conditionally independent of some of its ancestors given pX_i.
- Now we can write $P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i | pX_i)$
- Onstruct the BN:
 - Nodes are variables
 - Incoming edges to each variable X_i from each variable in pX_i
 - Conditional probability table for variable X_i : $P(X_i|pX_i)$

▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ● � � � �