Reasoning Under Uncertainty: Conditional Probability

CPSC 322 - Uncertainty 2

Textbook §6.1

- Recap

- A random variable is a variable that is randomly assigned one of a number of different values.
- The domain of a variable X, written dom(X), is the set of values X can take.
- A possible world specifies an assignment of one value to each random variable.
- $w \models \phi$ means the proposition ϕ is true in world w.
- Let Ω be the set of all possible worlds.
- Define a nonnegative measure $\mu(w)$ to each world w so that the measures of the possible worlds sum to 1.
- The probability of proposition ϕ is defined by:

$$P(\phi) = \sum_{w \models \phi} \mu(w).$$

- Probability Distributions

Probability Distributions

Consider the case where possible worlds are simply assignments to one random variable.

Conditional Probability

Definition (probability distribution)

A probability distribution P on a random variable X is a function $dom(X) \rightarrow [0,1]$ such that

$$x \mapsto P(X = x).$$

• When dom(X) is infinite we need a probability density function.

Joint Distribution

When there are multiple random variables, their joint distribution is a probability distribution over the variables' Cartesian product

Conditional Probability

- E.g., P(X,Y,Z) means $P(\langle X,Y,Z\rangle)$.
- Think of a joint distribution over n variables as an n-dimensional table
- Each entry, indexed by $X_1 = x_1, \dots, X_n = x_n$, corresponds to $P(X_1 = x_1 \wedge \ldots \wedge X_n = x_n).$
- The sum of entries across the whole table is 1.

Joint Distribution Example

Consider the following example, describing what a given day might be like in Vancouver.

Conditional Probability

- we have two random variables:
 - weather, with domain {Sunny, Cloudy};
 - temperature, with domain {Hot, Mild, Cold}.
- Then we have the joint distribution P(weather, temperature) given as follows:

		temperature		
		Hot	Mild	Cold
weather	Sunny	0.10	0.20	0.10
	Cloudy	0.05	0.35	0.20

Marginalization

Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

Conditional Probability

- E.g., $P(X,Y) = \sum_{z \in dom(Z)} P(X,Y,Z=z)$.
- This corresponds to summing out a dimension in the table.
- The new table still sums to 1.

Marginalization Example

		temperature		
		Hot	Mild	Cold
weather	Sunny	0.10	0.20	0.10
	Cloudy	0.05	0.35	0.20

If we marginalize out weather, we get

If we marginalize out temperature, we get

$$P(weather) = \begin{array}{c|c} Sunny & Cloudy \\ \hline 0.40 & 0.60 \\ \hline \end{array}$$

- 1 Recap
- 2 Probability Distributions
- 3 Conditional Probability
- Bayes' Theorem

Conditioning

 Probabilistic conditioning specifies how to revise beliefs based on new information.

Conditional Probability

- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability P(h|e) of h given e is the posterior probability of h.

Semantics of Conditional Probability

- Evidence e rules out possible worlds incompatible with e.
- ullet We can represent this using a new measure, μ_e , over possible worlds

$$\mu_e(\omega) = \begin{cases} \frac{1}{P(e)} \times \mu(\omega) & \text{if } \omega \models e \\ 0 & \text{if } \omega \not\models e \end{cases}$$

Definition

The conditional probability of formula h given evidence e is

$$P(h|e) = \sum_{\omega \models h} \mu_e(w)$$
$$= \frac{P(h \land e)}{P(e)}$$

Conditional Probability Example

Recap

 $weather \begin{array}{c|cccc} & & & & & & & \\ & & & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$

If we condition on weather = Sunny, we get

$$P(temperature|Weather = Sunny) = egin{array}{c|c} Hot & Mild & Cold \\ \hline 0.25 & 0.50 & 0.25 \\ \hline \end{array}$$

Conditioning on temperature, we get P(weather|temperature):

 $weather \begin{array}{c|cccc} & & & & & & \\ & & Lemperature \\ & Hot & Mild & Cold \\ \hline & 0.67 & 0.36 & 0.33 \\ \hline & 0.03 & 0.64 & 0.67 \\ \hline \end{array}$

Note that each column now sums to one.

Bayes' Theorem

Chain Rule

Definition (Chain Rule)

$$P(f_{1} \wedge f_{2} \wedge \dots \wedge f_{n})$$

$$= P(f_{n}|f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{1} \wedge \dots \wedge f_{n-1})$$

$$= P(f_{n}|f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{n-1}|f_{1} \wedge \dots \wedge f_{n-2}) \times P(f_{1} \wedge \dots \wedge f_{n-2})$$

$$= P(f_{n}|f_{1} \wedge \dots \wedge f_{n-2})$$

$$= P(f_{n}|f_{1} \wedge \dots \wedge f_{n-1}) \times P(f_{n-1}|f_{1} \wedge \dots \wedge f_{n-2}) \times \dots \times P(f_{3}|f_{1} \wedge f_{2}) \times P(f_{2}|f_{1}) \times P(f_{1})$$

$$= \prod_{i=1}^{n} P(f_{i}|f_{1} \wedge \dots \wedge f_{i-1})$$

 $\begin{aligned} & \texttt{E.g.}, \ P(weather, temperature) = \\ & P(weather | temperature) \cdot P(temperature). \end{aligned}$

- Bayes' Theorem

Bayes' theorem

The chain rule and commutativity of conjunction $(h \land e \text{ is equivalent to } e \land h)$ gives us:

$$P(h \wedge e) = P(h|e) \times P(e)$$

= $P(e|h) \times P(h)$.

If $P(e) \neq 0$, you can divide the right hand sides by P(e), giving us Bayes' theorem.

Definition (Bayes' theorem)

$$P(h|e) = \frac{P(e|h) \times P(h)}{P(e)}.$$

Why is Bayes' theorem interesting?

Often you have causal knowledge:

- \bullet $P(symptom \mid disease)$
- P(light is off | status of switches and switch positions)
- \bullet $P(alarm \mid fire)$
- $P(image\ looks\ like\ \ \, \ \, |\ \ \, a\ tree\ is\ in\ front\ of\ a\ car)$

...and you want to do evidential reasoning:

- \bullet $P(disease \mid symptom)$
- P(status of switches | light is off and switch positions)
- \bullet P(fire | alarm).
- $P(a \text{ tree is in front of a car} \mid \text{image looks like} \blacktriangleleft)$

