Reasoning Under Uncertainty: Conditional Probability

CPSC 322 - Uncertainty 2

Textbook §6.1

Lecture Overview

(1) Recap
(2) Probability Distributions
(3) Conditional Probability

4 Bayes' Theorem

Possible Worlds Semantics

- A random variable is a variable that is randomly assigned one of a number of different values.
- The domain of a variable X, written $\operatorname{dom}(X)$, is the set of values X can take.
- A possible world specifies an assignment of one value to each random variable.
- $w=\phi$ means the proposition ϕ is true in world w.
- Let Ω be the set of all possible worlds.
- Define a nonnegative measure $\mu(w)$ to each world w so that the measures of the possible worlds sum to 1 .
- The probability of proposition ϕ is defined by:

$$
P(\phi)=\sum_{w \models \phi} \mu(w) .
$$

Lecture Overview

(1) Recap
(2) Probability Distributions
(3) Conditional Probability

4 Bayes' Theorem

Probability Distributions

Consider the case where possible worlds are simply assignments to one random variable.

Definition (probability distribution)

A probability distribution P on a random variable X is a function $\operatorname{dom}(X) \rightarrow[0,1]$ such that

$$
x \mapsto P(X=x) .
$$

- When $\operatorname{dom}(X)$ is infinite we need a probability density function.

Joint Distribution

When there are multiple random variables, their joint distribution is a probability distribution over the variables' Cartesian product

- E.g., $P(X, Y, Z)$ means $P(\langle X, Y, Z\rangle)$.
- Think of a joint distribution over n variables as an n-dimensional table
- Each entry, indexed by $X_{1}=x_{1}, \ldots, X_{n}=x_{n}$, corresponds to $P\left(X_{1}=x_{1} \wedge \ldots \wedge X_{n}=x_{n}\right)$.
- The sum of entries across the whole table is 1 .

Joint Distribution Example

Consider the following example, describing what a given day might be like in Vancouver.

- we have two random variables:
- weather, with domain \{Sunny, Cloudy\};
- temperature, with domain \{Hot, Mild, Cold\}.
- Then we have the joint distribution P (weather, temperature) given as follows:

Marginalization

Given the joint distribution, we can compute distributions over smaller sets of variables through marginalization:

- E.g., $P(X, Y)=\sum_{z \in \operatorname{dom}(Z)} P(X, Y, Z=z)$.
- This corresponds to summing out a dimension in the table.
- The new table still sums to 1 .

Marginalization Example

\[

\]

If we marginalize out weather, we get

$$
P(\text { temperature })=
$$

If we marginalize out temperature, we get

$$
P(\text { weather })=
$$

Lecture Overview

(1) Recap
(2) Probability Distributions
(3) Conditional Probability

4 Bayes' Theorem

Conditioning

- Probabilistic conditioning specifies how to revise beliefs based on new information.
- You build a probabilistic model taking all background information into account. This gives the prior probability.
- All other information must be conditioned on.
- If evidence e is all of the information obtained subsequently, the conditional probability $P(h \mid e)$ of h given e is the posterior probability of h.

Semantics of Conditional Probability

- Evidence e rules out possible worlds incompatible with e.
- We can represent this using a new measure, μ_{e}, over possible worlds

$$
\mu_{e}(\omega)= \begin{cases}\frac{1}{P(e)} \times \mu(\omega) & \text { if } \omega \neq e \\ 0 & \text { if } \omega \neq e\end{cases}
$$

Definition

The conditional probability of formula h given evidence e is

$$
\begin{aligned}
P(h \mid e) & =\sum_{\omega \models h} \mu_{e}(w) \\
& =\frac{P(h \wedge e)}{P(e)}
\end{aligned}
$$

Conditional Probability Example

	temperature		
	Hot		Mild
	Cold		
	weather	Sunny	0.10

If we condition on weather $=$ Sunny, we get

$$
P(\text { temperature } \mid \text { Weather }=\text { Sunny })=
$$

Conditioning on temperature, we get P (weather \mid temperature $)$: temperature

weather		Hot	Mild	Cold
	Sunny	0.67	0.36	0.33
	Cloudy	0.33	0.64	0.67

Note that each column now sums to one.

Chain Rule

Definition (Chain Rule)

$$
\begin{aligned}
& P\left(f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times P\left(f_{1} \wedge \cdots \wedge f_{n-1}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times P\left(f_{n-1} \mid f_{1} \wedge \cdots \wedge f_{n-2}\right) \times \\
& P\left(f_{1} \wedge \cdots \wedge f_{n-2}\right) \\
&= P\left(f_{n} \mid f_{1} \wedge \cdots \wedge f_{n-1}\right) \times P\left(f_{n-1} \mid f_{1} \wedge \cdots \wedge f_{n-2}\right) \\
& \times \cdots \times P\left(f_{3} \mid f_{1} \wedge f_{2}\right) \times P\left(f_{2} \mid f_{1}\right) \times P\left(f_{1}\right) \\
&= \prod_{i=1}^{n} P\left(f_{i} \mid f_{1} \wedge \cdots \wedge f_{i-1}\right)
\end{aligned}
$$

E.g., $P($ weather, temperature $)=$ $P($ weather \mid temperature $) \cdot P($ temperature $)$.

Lecture Overview

(1) Recap
 (2) Probability Distributions
 (3) Conditional Probability

4 Bayes' Theorem

Bayes' theorem

The chain rule and commutativity of conjunction ($h \wedge e$ is equivalent to $e \wedge h$) gives us:

$$
\begin{aligned}
P(h \wedge e) & =P(h \mid e) \times P(e) \\
& =P(e \mid h) \times P(h) .
\end{aligned}
$$

If $P(e) \neq 0$, you can divide the right hand sides by $P(e)$, giving us Bayes' theorem.

Definition (Bayes' theorem)

$$
P(h \mid e)=\frac{P(e \mid h) \times P(h)}{P(e)} .
$$

Why is Bayes' theorem interesting?

Often you have causal knowledge:

- P (symptom \mid disease)
- P (light is off \mid status of switches and switch positions)
- P(alarm | fire)
- P (image looks like a tree is in front of a car)
...and you want to do evidential reasoning:
- P (disease | symptom)
- P (status of switches \mid light is off and switch positions)
- P(fire |alarm).
- $P($ a tree is in front of a car | image looks like $\boldsymbol{4})$

